Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zum direkten "spotten" von Micro­arrays am Fraunhofer IPA entwickelt

18.08.2008
Klein, günstig, schnell und flexibel

Am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA wurde ein Verfahren entwickelt, mit dem direkt aus gängigen Mikrotiterplatten gespottet werden kann. Durch die so vermiedene Prozessierung und Handhabung von einem Gefäß in ein neues sind Ergebnisverfälschungen durch Verunreinigungen in der Probe minimiert.

Der Trend in der Biotechnologie geht hin zur Prozessierung immer kleinerer Flüssigkeitsmengen. Die Gründe dafür sind vielfältig: Die zu untersuchenden Substanzen können sehr teuer sein, da es für die Herstellung schon vieler Schritte bedarf. Oder aber Stoffe sind biologisch gefährlich, so dass die Handhabung in kleinen Mengen zu einem verringerten Risiko führt.

Im Laufe der Jahre haben sich bestimmte Standards bei den Untersuchungen durchgesetzt. So werden häufig Wegwerfartikel aus spritzgegossenem Poly­propylen oder Polystyrol genutzt, da auf diese Weise die kostenaufwändige Reinigung und Desinfektion der Probenbehälter entfällt. Diese Mikrotiterplatten (MTP) werden mittlerweile in vielen Formen und Größen auf dem Markt angeboten.

Bei der Entwicklung des neuen Verfahrens lag das Hauptaugenmerk auf der Schwierigkeit die Reagenzien aus den Wells auf dem Mikroarray zu platzieren. Einfache Dosierverfahren mit Pipetten und per Hand sind sehr zeitaufwändig und ungenau. Um Querkontaminationen zu vermeiden, muss nach jeder Entnahme die Pipettenspitze ausgetauscht werden.

Ziel war es also, ein Verfahren zu entwickeln, mit dem möglichst kleine Dosiervolumina aus standardisierten MTPs entnommen werden können. Eine Quer­kontamination darf dabei nicht erfolgen, d. h. die Dosierung sollte möglichst direkt aus jedem Well einzeln erfolgen.

Das entwickelte Verfahren nutzt einen sehr kurzen Druckluftimpuls, um das zu druckende Medium aus dem Reaktionsgefäß einer Mikrotiterplatte direkt auf den Glasobjektträger zu bringen. Die Innovation besteht darin, die Wellböden einer Multiwellplatte mit sehr dünnen Bohrungen zu versehen, so dass der Kapillardruck in der Bohrung größer ist als der Druck durch den Flüssigkeitspegel im Well. So wird ein unbeabsichtigtes Auslaufen verhindert. Über den Druckimpuls lässt sich dann eine Dosiereinheit aus dem Well entnehmen, deren Volumen über die Anzahl der Tropfen und die Impulsdauer gesteuert werden kann.

Da mit diesem Verfahren direkt aus der nur leicht veränderten Multiwellplatte gedruckt werden kann, ist es extrem kostengünstig. Die Herstellungskosten einer entsprechenden Multiwellplatte lägen bei geeignetem Spritzgusswerkzeug und ausreichend hoher Stückzahl im "Cent-Bereich".

Dadurch kann auch die Multiwellplatte als Einmalprodukt eingesetzt werden. So sind nach dem Druckvorgang keinerlei Reinigungsschritte notwendig, da einfach eine neue Multiwellplatte genutzt werden kann. Querkontamination kann dadurch ausgeschlossen werden, dass der Stempel mit der Flüssigkeit im Well nicht in Berührung kommt. Bei Anwendungen mit höheren Anforderungen kann auch für jedes Well ein eigener Stempel verwendet werden, schließlich können diese sehr kostengünstig aufgebaut werden. Des Weiteren ist es auch möglich, die Mikrotiterplatte durch eine luftdurchlässige Membran, welche nur den Druckimpuls überträgt, nach oben hin zu verschließen. Totvolumina sind nicht vorhanden, weil die Multiwellplatte komplett leer ge­druckt werden kann. Somit gehen keine wertvollen Reagenzien verloren.

Dieses Verfahren ist außerdem extrem schnell, da ein Druckvorgang je nach zu druckendem Volumen nur einige Millisekunden benötigt und die Ver­fahr­einrichtungen sehr schnell sind.

Die zu untersuchenden Reaktionen (beispielsweise Zellwachstum, Aufreinigung o. a.) können direkt in der Multiwellplatte stattfinden, aus der später auch gedruckt wird. Durch die wegfallende Prozessierung und Handhabung der Proben von einem Gefäß in ein neues, sind somit Gefahren der Verunreinigung der Probe minimiert. Mit dem Einsatz der standardisierten Multiwellplatten ist dieses System zu nahezu allen gängigen Befüllungs- und Verarbeitungssystemen kompatibel.

Auf dem Probenträger lassen sich beliebige Kombinationen und Muster drucken. Man muss sich mit diesem System also nicht auf ein festes Muster im Array festlegen und kann auch Mischungen auf dem Probenträger erzeugen. Denkbar ist auch als Probenträger eine zweite Multiwellplatte mit beliebigem Format zu verwenden, in die dann die Mischungen mit variablen Volumina dosiert werden können. Diese können später zur Analyse wieder mit dem gleichen System auf einen geeigneten Probenträger gedruckt werden.

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dipl.-Ing. Andreas Traube
Telefon: +49(0)711/970-1233,
E-Mail: andreas.traube@ipa.fraunhofer.de
Dipl.-Ing. (FH) Tobias Brode
Telefon: +49(0)711/970-1257,
E-Mail: tobias.brode@ipa.fraunhofer.de

Hubert Grosser | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.ipa.fraunhofer.de/
http://www.m-pal.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Smarte Sensoren steuern Industrieprozesse von morgen
31.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik