Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zum direkten "spotten" von Micro­arrays am Fraunhofer IPA entwickelt

18.08.2008
Klein, günstig, schnell und flexibel

Am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA wurde ein Verfahren entwickelt, mit dem direkt aus gängigen Mikrotiterplatten gespottet werden kann. Durch die so vermiedene Prozessierung und Handhabung von einem Gefäß in ein neues sind Ergebnisverfälschungen durch Verunreinigungen in der Probe minimiert.

Der Trend in der Biotechnologie geht hin zur Prozessierung immer kleinerer Flüssigkeitsmengen. Die Gründe dafür sind vielfältig: Die zu untersuchenden Substanzen können sehr teuer sein, da es für die Herstellung schon vieler Schritte bedarf. Oder aber Stoffe sind biologisch gefährlich, so dass die Handhabung in kleinen Mengen zu einem verringerten Risiko führt.

Im Laufe der Jahre haben sich bestimmte Standards bei den Untersuchungen durchgesetzt. So werden häufig Wegwerfartikel aus spritzgegossenem Poly­propylen oder Polystyrol genutzt, da auf diese Weise die kostenaufwändige Reinigung und Desinfektion der Probenbehälter entfällt. Diese Mikrotiterplatten (MTP) werden mittlerweile in vielen Formen und Größen auf dem Markt angeboten.

Bei der Entwicklung des neuen Verfahrens lag das Hauptaugenmerk auf der Schwierigkeit die Reagenzien aus den Wells auf dem Mikroarray zu platzieren. Einfache Dosierverfahren mit Pipetten und per Hand sind sehr zeitaufwändig und ungenau. Um Querkontaminationen zu vermeiden, muss nach jeder Entnahme die Pipettenspitze ausgetauscht werden.

Ziel war es also, ein Verfahren zu entwickeln, mit dem möglichst kleine Dosiervolumina aus standardisierten MTPs entnommen werden können. Eine Quer­kontamination darf dabei nicht erfolgen, d. h. die Dosierung sollte möglichst direkt aus jedem Well einzeln erfolgen.

Das entwickelte Verfahren nutzt einen sehr kurzen Druckluftimpuls, um das zu druckende Medium aus dem Reaktionsgefäß einer Mikrotiterplatte direkt auf den Glasobjektträger zu bringen. Die Innovation besteht darin, die Wellböden einer Multiwellplatte mit sehr dünnen Bohrungen zu versehen, so dass der Kapillardruck in der Bohrung größer ist als der Druck durch den Flüssigkeitspegel im Well. So wird ein unbeabsichtigtes Auslaufen verhindert. Über den Druckimpuls lässt sich dann eine Dosiereinheit aus dem Well entnehmen, deren Volumen über die Anzahl der Tropfen und die Impulsdauer gesteuert werden kann.

Da mit diesem Verfahren direkt aus der nur leicht veränderten Multiwellplatte gedruckt werden kann, ist es extrem kostengünstig. Die Herstellungskosten einer entsprechenden Multiwellplatte lägen bei geeignetem Spritzgusswerkzeug und ausreichend hoher Stückzahl im "Cent-Bereich".

Dadurch kann auch die Multiwellplatte als Einmalprodukt eingesetzt werden. So sind nach dem Druckvorgang keinerlei Reinigungsschritte notwendig, da einfach eine neue Multiwellplatte genutzt werden kann. Querkontamination kann dadurch ausgeschlossen werden, dass der Stempel mit der Flüssigkeit im Well nicht in Berührung kommt. Bei Anwendungen mit höheren Anforderungen kann auch für jedes Well ein eigener Stempel verwendet werden, schließlich können diese sehr kostengünstig aufgebaut werden. Des Weiteren ist es auch möglich, die Mikrotiterplatte durch eine luftdurchlässige Membran, welche nur den Druckimpuls überträgt, nach oben hin zu verschließen. Totvolumina sind nicht vorhanden, weil die Multiwellplatte komplett leer ge­druckt werden kann. Somit gehen keine wertvollen Reagenzien verloren.

Dieses Verfahren ist außerdem extrem schnell, da ein Druckvorgang je nach zu druckendem Volumen nur einige Millisekunden benötigt und die Ver­fahr­einrichtungen sehr schnell sind.

Die zu untersuchenden Reaktionen (beispielsweise Zellwachstum, Aufreinigung o. a.) können direkt in der Multiwellplatte stattfinden, aus der später auch gedruckt wird. Durch die wegfallende Prozessierung und Handhabung der Proben von einem Gefäß in ein neues, sind somit Gefahren der Verunreinigung der Probe minimiert. Mit dem Einsatz der standardisierten Multiwellplatten ist dieses System zu nahezu allen gängigen Befüllungs- und Verarbeitungssystemen kompatibel.

Auf dem Probenträger lassen sich beliebige Kombinationen und Muster drucken. Man muss sich mit diesem System also nicht auf ein festes Muster im Array festlegen und kann auch Mischungen auf dem Probenträger erzeugen. Denkbar ist auch als Probenträger eine zweite Multiwellplatte mit beliebigem Format zu verwenden, in die dann die Mischungen mit variablen Volumina dosiert werden können. Diese können später zur Analyse wieder mit dem gleichen System auf einen geeigneten Probenträger gedruckt werden.

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dipl.-Ing. Andreas Traube
Telefon: +49(0)711/970-1233,
E-Mail: andreas.traube@ipa.fraunhofer.de
Dipl.-Ing. (FH) Tobias Brode
Telefon: +49(0)711/970-1257,
E-Mail: tobias.brode@ipa.fraunhofer.de

Hubert Grosser | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.ipa.fraunhofer.de/
http://www.m-pal.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau