Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zum direkten "spotten" von Micro­arrays am Fraunhofer IPA entwickelt

18.08.2008
Klein, günstig, schnell und flexibel

Am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA wurde ein Verfahren entwickelt, mit dem direkt aus gängigen Mikrotiterplatten gespottet werden kann. Durch die so vermiedene Prozessierung und Handhabung von einem Gefäß in ein neues sind Ergebnisverfälschungen durch Verunreinigungen in der Probe minimiert.

Der Trend in der Biotechnologie geht hin zur Prozessierung immer kleinerer Flüssigkeitsmengen. Die Gründe dafür sind vielfältig: Die zu untersuchenden Substanzen können sehr teuer sein, da es für die Herstellung schon vieler Schritte bedarf. Oder aber Stoffe sind biologisch gefährlich, so dass die Handhabung in kleinen Mengen zu einem verringerten Risiko führt.

Im Laufe der Jahre haben sich bestimmte Standards bei den Untersuchungen durchgesetzt. So werden häufig Wegwerfartikel aus spritzgegossenem Poly­propylen oder Polystyrol genutzt, da auf diese Weise die kostenaufwändige Reinigung und Desinfektion der Probenbehälter entfällt. Diese Mikrotiterplatten (MTP) werden mittlerweile in vielen Formen und Größen auf dem Markt angeboten.

Bei der Entwicklung des neuen Verfahrens lag das Hauptaugenmerk auf der Schwierigkeit die Reagenzien aus den Wells auf dem Mikroarray zu platzieren. Einfache Dosierverfahren mit Pipetten und per Hand sind sehr zeitaufwändig und ungenau. Um Querkontaminationen zu vermeiden, muss nach jeder Entnahme die Pipettenspitze ausgetauscht werden.

Ziel war es also, ein Verfahren zu entwickeln, mit dem möglichst kleine Dosiervolumina aus standardisierten MTPs entnommen werden können. Eine Quer­kontamination darf dabei nicht erfolgen, d. h. die Dosierung sollte möglichst direkt aus jedem Well einzeln erfolgen.

Das entwickelte Verfahren nutzt einen sehr kurzen Druckluftimpuls, um das zu druckende Medium aus dem Reaktionsgefäß einer Mikrotiterplatte direkt auf den Glasobjektträger zu bringen. Die Innovation besteht darin, die Wellböden einer Multiwellplatte mit sehr dünnen Bohrungen zu versehen, so dass der Kapillardruck in der Bohrung größer ist als der Druck durch den Flüssigkeitspegel im Well. So wird ein unbeabsichtigtes Auslaufen verhindert. Über den Druckimpuls lässt sich dann eine Dosiereinheit aus dem Well entnehmen, deren Volumen über die Anzahl der Tropfen und die Impulsdauer gesteuert werden kann.

Da mit diesem Verfahren direkt aus der nur leicht veränderten Multiwellplatte gedruckt werden kann, ist es extrem kostengünstig. Die Herstellungskosten einer entsprechenden Multiwellplatte lägen bei geeignetem Spritzgusswerkzeug und ausreichend hoher Stückzahl im "Cent-Bereich".

Dadurch kann auch die Multiwellplatte als Einmalprodukt eingesetzt werden. So sind nach dem Druckvorgang keinerlei Reinigungsschritte notwendig, da einfach eine neue Multiwellplatte genutzt werden kann. Querkontamination kann dadurch ausgeschlossen werden, dass der Stempel mit der Flüssigkeit im Well nicht in Berührung kommt. Bei Anwendungen mit höheren Anforderungen kann auch für jedes Well ein eigener Stempel verwendet werden, schließlich können diese sehr kostengünstig aufgebaut werden. Des Weiteren ist es auch möglich, die Mikrotiterplatte durch eine luftdurchlässige Membran, welche nur den Druckimpuls überträgt, nach oben hin zu verschließen. Totvolumina sind nicht vorhanden, weil die Multiwellplatte komplett leer ge­druckt werden kann. Somit gehen keine wertvollen Reagenzien verloren.

Dieses Verfahren ist außerdem extrem schnell, da ein Druckvorgang je nach zu druckendem Volumen nur einige Millisekunden benötigt und die Ver­fahr­einrichtungen sehr schnell sind.

Die zu untersuchenden Reaktionen (beispielsweise Zellwachstum, Aufreinigung o. a.) können direkt in der Multiwellplatte stattfinden, aus der später auch gedruckt wird. Durch die wegfallende Prozessierung und Handhabung der Proben von einem Gefäß in ein neues, sind somit Gefahren der Verunreinigung der Probe minimiert. Mit dem Einsatz der standardisierten Multiwellplatten ist dieses System zu nahezu allen gängigen Befüllungs- und Verarbeitungssystemen kompatibel.

Auf dem Probenträger lassen sich beliebige Kombinationen und Muster drucken. Man muss sich mit diesem System also nicht auf ein festes Muster im Array festlegen und kann auch Mischungen auf dem Probenträger erzeugen. Denkbar ist auch als Probenträger eine zweite Multiwellplatte mit beliebigem Format zu verwenden, in die dann die Mischungen mit variablen Volumina dosiert werden können. Diese können später zur Analyse wieder mit dem gleichen System auf einen geeigneten Probenträger gedruckt werden.

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dipl.-Ing. Andreas Traube
Telefon: +49(0)711/970-1233,
E-Mail: andreas.traube@ipa.fraunhofer.de
Dipl.-Ing. (FH) Tobias Brode
Telefon: +49(0)711/970-1257,
E-Mail: tobias.brode@ipa.fraunhofer.de

Hubert Grosser | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.ipa.fraunhofer.de/
http://www.m-pal.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit