Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoröhren in Streifen gelegt

21.05.2014

Mit dünnen Schichten aus Kohlenstoff-Nanoröhren lassen sich neue Technologien realisieren. Würzburger Forscher haben ein Verfahren unter die Lupe genommen, mit dem solche Schichten hergestellt werden – und neue Erkenntnisse gewonnen.

Einige technische Neuerungen der jüngsten Zeit beruhen auf dem Einsatz von dünnen Schichten aus Kohlenstoff-Nanoröhren. So haben Wissenschaftler der Universität Stanford (USA) 2013 den Prototypen eines Computers vorgestellt, dessen elektronische Komponenten nicht auf Silizium basieren, sondern auf Kohlenstoff-Nanoröhren. Auch in den Displays von Smartphones kommen Nanoröhren teilweise schon zum Einsatz – als kostengünstigere Alternative zu den bislang üblichen Indium-Zinn-Oxiden.


Kohlenstoff-Nanoröhren setzen sich aus einer Flüssigkeit heraus in regelmäßigen Streifen auf einer Oberfläche ab. Würzburger Forscher haben diesen Prozess genauer charakterisiert.

(Grafik: Tobias Hertel)

Dünne Schichten aus Kohlenstoff-Nanoröhren lassen sich mit verschiedenen Methoden erzeugen. „Dabei ist es sehr wichtig, die Herstellung der Schichten genau steuern zu können, um die gewünschten Strukturen und Eigenschaften zu erreichen“, sagt Professor Tobias Hertel von der Universität Würzburg. Seine Arbeitsgruppe am Institut für Physikalische und Theoretische Chemie hat dazu jetzt neue Erkenntnisse gewonnen. Veröffentlicht sind sie in der Zeitschrift „Nano“ der American Chemical Society (ACS).

Horizontale Abscheidung von Nanoröhren

Das Team um Tobias Hertel hat sich mit der Technik der horizontalen Abscheidung befasst. Dabei setzen sich die Nanoröhren aus einer verdampfenden Flüssigkeit heraus auf einer Oberfläche ab. „Dieses Verfahren nutzt Selbstorganisationsphänomene der Nanoröhren“, erklärt der Professor, „es ermöglicht zum Beispiel die Herstellung dünnster Schichten, in denen alle Nanoröhren mit der gleichen Ausrichtung angeordnet sind.“

Mit dieser Technik können auch Schichten erzeugt werden, in denen sich die Nanoröhren zu regelmäßigen Streifenmustern mit Dimensionen im Mikrometerbereich arrangieren. „Dieser Effekt ähnelt sehr der Bildung von Kaffeeablagerungen und wird daher gelegentlich auch als Kaffee-Fleck-Phänomen bezeichnet“, so Hertel.

Die so entstehenden Schichten eignen sich hervorragend zur Herstellung nanorohrbasierter Transistoren. Bislang allerdings sei unklar gewesen, wie sich die regelmäßigen Streifen bilden und wie sich dieser Prozess kontrollieren lässt. Dank der Forschung der Würzburger Wissenschaftler hat sich das nun geändert.

Gleichmäßige Bewegung ergibt Streifenmuster

Bisher gingen die Forscher davon aus, dass die verdampfende Flüssigkeit sich ruckartig über die zu beschichtende Oberfläche bewegt und dass an ihrem Rand bei jedem Ruck ein Streifen aus Nanoröhren zurückbleibt – „ähnlich wie auch ein stotternder Autoreifen auf dem Asphalt ein Auto ruckelnd zum Stillstand bringt“, vergleicht Hertel.

Sein Team hat nun aber gezeigt, dass der Flüssigkeitsrand bei seiner Bewegung über die Oberfläche nicht ruckartig, sondern gleichmäßig langsamer wird und dann wieder an Fahrt aufnimmt. Weil das periodisch geschieht, ergeben sich daraus regelmäßige Streifenmuster.

Glasplatten beschleunigen den Prozess

Die Forscher haben außerdem herausgefunden, wie sich dieser Prozess deutlich beschleunigen lässt: „Wenn wir die Flüssigkeit, aus der die Schichten abgeschieden werden, zwischen zwei Glasplatten geben, die nur um Haaresbreite voneinander entfernt sind, entstehen die Streifenmuster bis zu hundert Mal schneller.“ Verantwortlich dafür sei die an der Grenze zwischen Flüssigkeit und Unterlage theoretisch beliebig schnelle Verdunstung – ein Effekt, der erst auf der Mikrometerskala spürbar wird.

Bei Youtube hat Professor Hertel ein Video hinterlegt: Darin ist in Zeitlupe zu sehen, wie bei der Technik der horizontalen Abscheidung Schritt für Schritt ein Streifenmuster aus Kohlenstoff-Nanoröhren entsteht: http://www.youtube.com/watch?v=KBHswRKdQXQ

Wie die Forschung weitergeht

Die nächsten Experimente zielen laut Professor Hertel darauf ab, die Schichtbildung besser zu kontrollieren und weiter zu beschleunigen. „Damit dieser Prozess wirklich einmal eine Anwendung finden kann, liegt noch ein ganzes Stück Arbeit vor uns. Insbesondere müssen wir die Grenzen des Machbaren ausdehnen im Hinblick auf die Geschwindigkeit, mit der diese Schichten entstehen.“

Kontakt

Prof. Dr. Tobias Hertel, Institut für Physikalische und Theoretische Chemie, Universität Würzburg, T (0931) 31-86300, tobias.hertel@uni-wuerzburg.de

„Dynamical Contact-Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation“,Han Li, Tilman C. Hain, Andreas Muzha, Friedrich Schöppler, Tobias Hertel. ACS Nano, online veröffentlicht am 14. Mai 2014, DOI: 10.1021/nn501957y

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften