Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoröhren in Streifen gelegt

21.05.2014

Mit dünnen Schichten aus Kohlenstoff-Nanoröhren lassen sich neue Technologien realisieren. Würzburger Forscher haben ein Verfahren unter die Lupe genommen, mit dem solche Schichten hergestellt werden – und neue Erkenntnisse gewonnen.

Einige technische Neuerungen der jüngsten Zeit beruhen auf dem Einsatz von dünnen Schichten aus Kohlenstoff-Nanoröhren. So haben Wissenschaftler der Universität Stanford (USA) 2013 den Prototypen eines Computers vorgestellt, dessen elektronische Komponenten nicht auf Silizium basieren, sondern auf Kohlenstoff-Nanoröhren. Auch in den Displays von Smartphones kommen Nanoröhren teilweise schon zum Einsatz – als kostengünstigere Alternative zu den bislang üblichen Indium-Zinn-Oxiden.


Kohlenstoff-Nanoröhren setzen sich aus einer Flüssigkeit heraus in regelmäßigen Streifen auf einer Oberfläche ab. Würzburger Forscher haben diesen Prozess genauer charakterisiert.

(Grafik: Tobias Hertel)

Dünne Schichten aus Kohlenstoff-Nanoröhren lassen sich mit verschiedenen Methoden erzeugen. „Dabei ist es sehr wichtig, die Herstellung der Schichten genau steuern zu können, um die gewünschten Strukturen und Eigenschaften zu erreichen“, sagt Professor Tobias Hertel von der Universität Würzburg. Seine Arbeitsgruppe am Institut für Physikalische und Theoretische Chemie hat dazu jetzt neue Erkenntnisse gewonnen. Veröffentlicht sind sie in der Zeitschrift „Nano“ der American Chemical Society (ACS).

Horizontale Abscheidung von Nanoröhren

Das Team um Tobias Hertel hat sich mit der Technik der horizontalen Abscheidung befasst. Dabei setzen sich die Nanoröhren aus einer verdampfenden Flüssigkeit heraus auf einer Oberfläche ab. „Dieses Verfahren nutzt Selbstorganisationsphänomene der Nanoröhren“, erklärt der Professor, „es ermöglicht zum Beispiel die Herstellung dünnster Schichten, in denen alle Nanoröhren mit der gleichen Ausrichtung angeordnet sind.“

Mit dieser Technik können auch Schichten erzeugt werden, in denen sich die Nanoröhren zu regelmäßigen Streifenmustern mit Dimensionen im Mikrometerbereich arrangieren. „Dieser Effekt ähnelt sehr der Bildung von Kaffeeablagerungen und wird daher gelegentlich auch als Kaffee-Fleck-Phänomen bezeichnet“, so Hertel.

Die so entstehenden Schichten eignen sich hervorragend zur Herstellung nanorohrbasierter Transistoren. Bislang allerdings sei unklar gewesen, wie sich die regelmäßigen Streifen bilden und wie sich dieser Prozess kontrollieren lässt. Dank der Forschung der Würzburger Wissenschaftler hat sich das nun geändert.

Gleichmäßige Bewegung ergibt Streifenmuster

Bisher gingen die Forscher davon aus, dass die verdampfende Flüssigkeit sich ruckartig über die zu beschichtende Oberfläche bewegt und dass an ihrem Rand bei jedem Ruck ein Streifen aus Nanoröhren zurückbleibt – „ähnlich wie auch ein stotternder Autoreifen auf dem Asphalt ein Auto ruckelnd zum Stillstand bringt“, vergleicht Hertel.

Sein Team hat nun aber gezeigt, dass der Flüssigkeitsrand bei seiner Bewegung über die Oberfläche nicht ruckartig, sondern gleichmäßig langsamer wird und dann wieder an Fahrt aufnimmt. Weil das periodisch geschieht, ergeben sich daraus regelmäßige Streifenmuster.

Glasplatten beschleunigen den Prozess

Die Forscher haben außerdem herausgefunden, wie sich dieser Prozess deutlich beschleunigen lässt: „Wenn wir die Flüssigkeit, aus der die Schichten abgeschieden werden, zwischen zwei Glasplatten geben, die nur um Haaresbreite voneinander entfernt sind, entstehen die Streifenmuster bis zu hundert Mal schneller.“ Verantwortlich dafür sei die an der Grenze zwischen Flüssigkeit und Unterlage theoretisch beliebig schnelle Verdunstung – ein Effekt, der erst auf der Mikrometerskala spürbar wird.

Bei Youtube hat Professor Hertel ein Video hinterlegt: Darin ist in Zeitlupe zu sehen, wie bei der Technik der horizontalen Abscheidung Schritt für Schritt ein Streifenmuster aus Kohlenstoff-Nanoröhren entsteht: http://www.youtube.com/watch?v=KBHswRKdQXQ

Wie die Forschung weitergeht

Die nächsten Experimente zielen laut Professor Hertel darauf ab, die Schichtbildung besser zu kontrollieren und weiter zu beschleunigen. „Damit dieser Prozess wirklich einmal eine Anwendung finden kann, liegt noch ein ganzes Stück Arbeit vor uns. Insbesondere müssen wir die Grenzen des Machbaren ausdehnen im Hinblick auf die Geschwindigkeit, mit der diese Schichten entstehen.“

Kontakt

Prof. Dr. Tobias Hertel, Institut für Physikalische und Theoretische Chemie, Universität Würzburg, T (0931) 31-86300, tobias.hertel@uni-wuerzburg.de

„Dynamical Contact-Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation“,Han Li, Tilman C. Hain, Andreas Muzha, Friedrich Schöppler, Tobias Hertel. ACS Nano, online veröffentlicht am 14. Mai 2014, DOI: 10.1021/nn501957y

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau