Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanofeine Spitze schreibt künstliche Zellmembranen

10.10.2013
Ein neues Verfahren, um künstliche Membranen herzustellen, haben Forscher um Dr. Michael Hirtz vom KIT entwickelt:

Mit einer nanometerfeinen Spitze schreiben sie maßgeschneiderte Phospholipid-Membranstücke auf ein Substrat aus Graphen.


Mithilfe der Lipid Dip-Pen Nanolithography (L-DPN) werden Lipid-Membranen direkt auf den zweidimensionalen Kohlenstoff Graphen aufgebracht.
(Grafik: Hirtz/Nature Communications)

Die so gefertigten biomimetischen, also biologische Strukturen nachahmenden, Membranen ermöglichen, Funktionen von Zellmembranen gezielt zu untersuchen und neue Anwendungen in Medizin und Biotechnologie zu entwickeln, beispielsweise Biosensoren.

In der Online-Publikation „Nature Communications“ stellen die Forscher das Verfahren vor.

Lipide (von gr. lipos, „Fett“) sind zentrale Strukturbausteine von Zellmembranen. Der Körper des Menschen enthält rund 100 Billionen Zellen. Jede von ihnen ist von einer Membran umhüllt, die im Wesentlichen aus einer Doppellage von teils wasserliebenden, teils wasserabstoßenden phosphorhaltigen Lipiden besteht.

Diese Zellmembranen beinhalten zahlreiche Proteine, Ionenkanäle und andere Biomoleküle, die jeweils lebenswichtige Aufgaben erfüllen. Daher ist die Erforschung der Zellmembranen essenziell für viele Bereiche der Medizin und der Biotechnologie. Ein besseres Verständnis ihrer Funktionen ermöglicht neue Anwendungen beispielsweise in Sensoren mit biologischen Komponenten, beim Einsatz von Enzymen als Katalysatoren oder zum gezielten Einbringen von Arzneimittelwirkstoffen. Allerdings ist es äußerst schwierig, die Membranen direkt an Zellen im menschlichen Körper zu untersuchen.

Forscher verwenden daher häufig Modellmembranen, die auf spezielle Oberflächen aufgebracht werden. Diese biomimetischen, das heißt biologische Strukturen nachahmenden Systeme ermöglichen einen einfachen und besser kontrollierbaren Zugriff. Eine internationale Gruppe von Forschern um Dr. Michael Hirtz, Projektleiter in der Abteilung von Professor Harald Fuchs am Institut für Nanotechnologie (INT) des KIT, sowie Dr. Aravind Vijayaraghavan von der Universität Manchester, Großbritannien, stellen nun ein neues Verfahren zur Herstellung von biomimetischen Membranen vor: Sie schreiben maßgeschneiderte Phospholipid-Membranstücke mithilfe der bereits früher am KIT entwickelten Lipid Dip-Pen Nanolithography (L-DPN) auf ein Substrat aus Graphen.

„Die L-DPN Technik benutzt eine feine Spitze, um Lipidmembranen auf Oberflächen zu schreiben – ähnlich einem Federkiel, der Tinte auf Papier bringt“, erklärt Dr. Michael Hirtz vom INT des KIT. Allerdings misst die Spitze nur wenige Nanometer und wird mit hoher Präzision maschinell kontrolliert. Dies erlaubt es, winzig kleine Strukturen zu erzeugen – kleiner als Zellen und hinunter bis auf die Nanoskala (ein Nanometer entspricht 10-9 Metern). Durch den Einsatz von parallel angeordneten Spitzen lassen sich verschiedene Lipid-Mischungen gleichzeitig schreiben, was Strukturen unterschiedlicher chemischer Zusammensetzung in einer Größe ermöglicht, die geringer als die einer einzelnen Zelle ist.

Das als Substrat eingesetzte Graphen ist ein Halbmetall mit einzigartigen elektronischen Eigenschaften. Wie Dr. Aravin Vijayaraghavan von der Universität Manchester erklärt, verteilen sich die aufgebrachten Lipide auf dem Graphen ganz gleichmäßig, wodurch sich ausgezeichnete Membranen ergeben. Weitere Vorteile von Graphen sind seine einstellbare Leitfähigkeit und seine Eigenschaft, die Fluoreszenz markierter Phospholipide zu unterdrücken. Wenn die Lipide entsprechende Bindungsstellen aufweisen, beispielsweise Biotin, binden die Membranen Streptavidin, ein von bestimmten Bakterien produziertes Protein, das in verschiedenen biotechnologischen Verfahren eingesetzt wird. Sind die Lipide elektrisch geladen, findet ein Ladungstransfer von den Lipiden zum Graphen statt. Dadurch ändert sich dessen Leitfähigkeit. Diese Änderung der Leitfähigkeit lässt sich in Biosensoren als Signal der Detektion nutzen.

Die Forscher um Hirtz werden ihre biomimetischen Membranen künftig dazu nutzen, auf Graphen und Lipiden basierte neuartige Biosensoren zu bauen. Geplant sind Sensoren, die über die Änderung der Leitfähigkeit auf die Anbindung von Proteinen reagieren, sowie Sensoren, welche die Funktion von Ionenkanälen in den Membranen detektieren. Bei Ionenkanälen handelt es sich um porenbildende Proteine, die elektrisch geladenen Teilchen das Durchqueren der Membran ermöglichen. „Proteinsensoren könnten in der medizinischen Diagnostik eingesetzt werden. Die Funktion von Ionenkanälen zu überwachen, ist wichtig für die Arzneimittelforschung“, berichtet der KIT-Wissenschaftler.

M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs & A. Vijayaraghavan: Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nature Communications, 10. Oct 2013 | DOI: 10.1038/ncomms3591.

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, E-Mail: margarete.lehne@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | KIT-Presse
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften