Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobearbeitung mit HighPower-UKP-Lasern: deutlich wirtschaftlicher dank Multistrahl-Technologie

29.01.2013
Das Fraunhofer-Institut für Lasertechnik ILT hat für die Herstellung periodischer Mikrostrukturen ein neues Optiksystem entwickelt, das die Prozessgeschwindigkeit bei der Bearbeitung mit Ultrakurzpulslasern (UKP) im Vergleich zu herkömmlichen Systemen um ein Vielfaches steigert.

Durch die Aufteilung des Laserstrahls in eine Vielzahl von Teilstrahlen kann die Leistung von Hochleistungs-UKP-Lasern für die Mikrobearbeitung in vollem Umfang ausgeschöpft und damit die Prozesskosten erheblich gesenkt werden.


UKP-Parallelbearbeitung mit Multistrahltechnologie. Bildquelle: Fraunhofer ILT, Aachen/Volker Lannert


Strukturierung von Kolbenringen mit Multistrahltechnologie zur Oberflächenfunktionalisierung. Bildquelle: Fraunhofer ILT, Aachen

Auf dem 2. UKP-Workshop vom 17. – 18. April 2013 in Aachen stellt ein Experte unser Verfahren vor.

Ob zur Herstellung von Masken und Mikrosieben oder zur Erzeugung funktionaler Oberflächen für tribologisch hochbelastete Bauteile oder Prägewerkzeuge: Immer mehr Anwendungen benötigen eine mikrostrukturierte Oberfläche und dies auf einer immer größeren Fläche. Die Erzeugung von Strukturen auf Werkstücken im Mikrometerbereich erfordert eine besonders präzise Bearbeitung, wie sie optimal mit ultrakurz gepulster Laserstrahlung erfolgen kann.
Derzeit werden zu diesem Zweck neben mechanischen Verfahren meist Nanosekundenlaser eingesetzt, da diese aufgrund ihrer höheren Wirtschaftlichkeit besser etabliert sind als UKP-Laser. Allerdings bergen sie den Nachteil, dass bei der Nanosekunden-Bearbeitung durch Schmelzeffekte Aufwürfe entstehen und daher oft eine aufwändige Nachbearbeitung des Werkstücks erfolgen muss. Zudem begrenzen die Schmelzeffekte die Auflösung der Mikrostrukturierung.

Im Gegensatz dazu lassen sich funktionale Oberflächenstrukturen mit dem Ultrakurzpulslaser völlig nachbearbeitungsfrei erzeugen. Aufgrund der starken Lokalisierung der eingebrachten Laserenergie auf dem Werkstück und der sehr hohen Intensitäten entstehen bei der Bearbeitung keine Materialaufwürfe. Zudem erzielt die Bearbeitung mit einem UKP-Laser eine äußerst hohe Genauigkeit im Bereich weniger Mikrometer sowie eine sehr hohe Tiefenauflösung im Bereich von hundert Nanometern. Jedoch sind die Abtragraten hier vergleichsweise gering und damit die Prozesszeiten im Vergleich zur Bearbeitung mit Pulsen im Nanosekundenbereich sehr hoch. Das macht die Mikrostrukturierung mit UKP-Lasern aus wirtschaftlicher Sicht zunächst nur für hochwertige Produkte oder Werkzeuge für die Massenreplikation interessant.

Zudem kann in vielen Anwendungsfällen zur Mikrostrukturierung mit den heute gängigen industrietauglichen UKP-Lasersystemen im Leistungsbereich von 50 - 100 Watt meist nur ein Bruchteil der zur Verfügung stehenden Laserleistung eingesetzt werden, da in jeden Bearbeitungspunkt nur eine beschränkte maximale Leistung eingebracht werden kann. Eine zu hohe Leistungseinkopplung in den Bearbeitungspunkt führt insbesondere bei kleinen Fokusdurchmessern im Mikrometerbereich zur Plasmaentstehung sowie zu thermischen Effekten mit Schmelzaufwürfen und somit zu schlechten Bearbeitungsergebnissen.

Forscher des Fraunhofer ILT haben sich nun der Frage angenommen, wie eine hohe Laserleistung für die UKP-Mikrostrukturierung optimal genutzt werden kann bei gleichzeitiger Garantie eines einwandfreien Bearbeitungsergebnisses.

Wie kann die Laserleistung »auf die Straße« gebracht werden?
Eine Möglichkeit zur Ausschöpfung der verfügbaren Laserleistung für die UKP-Mikrostrukturierung besteht in einer schnellen Strahlablenkung. Dabei wird zur Sicherstellung einer hohen Abtragsqualität die Pulsenergie niedrig gehalten, durch eine hohe Pulsfrequenz gepaart mit einer hohen Scangeschwindigkeit jedoch eine hohe Flächenrate erreicht. Mit einem am Fraunhofer ILT entwickelten Polygonscanner-System lassen sich damit Scangeschwindigkeiten bis zu 350 m/s erreichen. Dies erlaubt die schnelle Verteilung hochfrequenter Laserpulse auf großen Flächen. Eine andere Möglichkeit, die derzeit am Fraunhofer ILT verfolgt wird, ist die Parallelisierung des Laserstrahlabtrags.

Durch die Aufteilung des Laserstrahls in mehrere Strahlen kann erheblich mehr Laserleistung genutzt werden. Möglich macht diese Strahlaufteilung ein diffraktives optisches Element (DOE). Es besteht aus einer Anordnung von Mikrostrukturen, die durch den Effekt der Beugung je nach Design nahezu beliebige Intensitätsverteilungen hinter dem Element erzeugen können. Das Forscher-Team am Fraunhofer ILT hat das DOE zwischen der Strahlquelle und einem Galvanometerscanner so eingebaut, dass die geteilten Laserstrahlen in den Galvanometerscanner abgebildet werden. Durch die Fokussierung der Strahlen mithilfe eines F-theta-Objektivs entsteht schließlich eine periodische Anordnung von Bearbeitungspunkten. Diese können nun über das Werkstück bewegt werden und so beliebig komplexe Muster abtragen.

Die Teilung eines Laserstrahls in 16 Teilstrahlen wurde am Fraunhofer ILT bereits erfolgreich gezeigt. Durch diese Strahlparallelisierung kann das Werkstück an 16 periodisch angeordneten Stellen gleichzeitig bearbeitet werden. Die Bearbeitungsgeschwindigkeit versechzehntfacht sich somit. In einem Laborversuch konnten Experten bereits erfolgreich die Bearbeitung mit 144 Teilstrahlen erproben, eine weitere Skalierung ist möglich.
UKP-Mikrostrukturierung auf großen Flächen wird wirtschaftlich
Künftig können mit dieser Technologie die Leistungsreserven aktueller Hochleistungs-Ultrakurzpulslaser-Systeme für die Laserbearbeitung vollständig auf dem Werkstück genutzt werden. Im gleichen Maß sinken die Prozesszeiten, somit verringern sich die gesamten Prozesskosten signifikant. Für den Anwender wird der UKP-Laser für die Herstellung periodischer Mikrostrukturen aus wirtschaftlicher Sicht nun deutlich interessanter. Die Strukturierung auch großer Flächen ist mit diesem Ansatz wirtschaftlich realisierbar. Basierend auf dieser Technologie wurde am Fraunhofer ILT eine Prototypenanlage zur Erzeugung von Mikrostrukturen mit UKP-Lasern entwickelt, die in künftigen Projekten industrietauglich gemacht werden soll. Fernziel ist es, bald auch Multi-Hundert-Watt-Laser für die Mikrostrukturierung einzusetzen.

2. UKP-Workshop vom 17.-18. April 2013 in Aachen

Eines der Themen des 2. Ultrakurzpulslaser-Workshops ist der Einsatz des UKP-Lasers zur Erzeugung ressourcensparender Mikrostrukturen für hochbelastete Bauteile. Im Rahmen des Projekts »SmartSurf« untersucht das Fraunhofer ILT zusammen mit namhaften Partnern aus der Industrie die Reibungs- und Verschleißminimierung von aufeinandertreffenden Oberflächen durch das Einbringen von wenigen Mikrometer tiefen Näpfchen. Ein Beispiel sind hier Kolbenringe in Zylinderlaufbuchsen. Das Projekt ist eingebettet in die »Effizienzfabrik« des Bundesministeriums für Bildung und Forschung (BMBF) zur Förderung ressourceneffizienter Produktionstechnologien. Nach dem Vortrag steht Ihnen unser Experte Stephan Eifel für eine Diskussion zur Verfügung. Anmeldungen zum 2. UKP-Workshop sind ab sofort unter www.ultrakurzpulslaser.de möglich.

Ansprechpartner

Dipl.-Phys. Stephan Eifel
Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-311
stephan.eifel@ilt.fraunhofer.de
Dr. Jens Holtkamp
Leiter der Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Telefon: +49 241 8906-0
Fax: +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de
http://www.ultrakurzpulslaser.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Leichtbaupotenziale von Kunststoffen besser nutzen mit maßgeschneiderter Simulation
21.07.2016 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Rostocker Forscher entwickeln neue Verfahren zur Reduktion von Emissionen
18.07.2016 | Universität Rostock

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forschen in 15 Kilometern Höhe - Einsatz des Flugzeuges HALO wird weiter gefördert

Das moderne Höhen-Forschungsflugzeug HALO (High Altitude and Long Range Research Aircraft) wird auch in Zukunft für Projekte zur Atmosphären- und Erdsystemforschung eingesetzt werden können: Die Deutsche Forschungsgemeinschaft (DFG) bewilligte jetzt Fördergelder von mehr als 11 Millionen Euro für die nächste Phase des HALO Schwerpunktprogramms (SPP 1294) in den kommenden drei Jahren. Die Universität Leipzig ist neben der Goethe-Universität Frankfurt am Main und der Technischen Universität Dresden federführend bei diesem DFG-Schwerpunktprogramm.

Die Universität Leipzig wird von der Fördersumme knapp 6 Millionen Euro zur Durchführung von zwei Forschungsprojekten mit HALO sowie zur Deckung der hohen...

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Rekord in der Hochdruckforschung: 1 Terapascal erstmals erreicht und überschritten

Einem internationalen Forschungsteam um Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth ist es erstmals gelungen, im Labor einen Druck von 1 Terapascal (= 1.000.000.000.000 Pascal) zu erzeugen. Dieser Druck ist dreimal höher als der Druck, der im Zentrum der Erde herrscht. Die in 'Science Advances' veröffentlichte Studie eröffnet neue Forschungsmöglichkeiten für die Physik und Chemie der Festkörper, die Materialwissenschaft, die Geophysik und die Astrophysik.

Extreme Drücke und Temperaturen, die im Labor mit hoher Präzision erzeugt und kontrolliert werden, sind ideale Voraussetzungen für die Physik, Chemie und...

Im Focus: Graphen von der Rolle: Serienfertigung von Elektronik aus 2D-Nanomaterialien

Graphen, Kohlenstoff in zweidimensionaler Struktur, wird seit seiner Entdeckung im Jahr 2004 als ein möglicher Werkstoff der Zukunft gehandelt: Sein geringes Gewicht, die extreme Festigkeit, vor allem aber seine hohe thermische und elektrische Leitfähigkeit wecken Hoffnungen, Graphen bald für vollkommen neue Geräte und Technologien einsetzen zu können. Einen ersten Schritt gehen jetzt die Forscher im EU-Forschungsprojekt »HEA2D«: Ziel ist es, das 2D-Nanomaterial von einer Kupferfolie durch ein Rolle-zu-Rolle-Verfahren auf Kunststofffolien und -bauteile zu übertragen. Auf diese Weise soll eine Serienfertigung elektronischer und opto-elektronischer Komponenten auf Graphenbasis möglich werden.

Besonders interessiert an hochleistungsfähiger Elektronik aus 2D-Materialien ist die Automobilindustrie, die diese in Schaltern mit transparenten Leiterbahnen,...

Im Focus: Menschen können einzelnes Photon sehen

Forscher am Wiener Institut für Molekulare Pathologie (IMP) und an der Rockefeller University in New York wiesen erstmals nach, dass Menschen ein einzelnes Photon wahrnehmen können. Für ihre Experimente verwendeten sie eine Quanten-Lichtquelle und kombinierten sie mit einem ausgeklügelten psycho-physikalischen Ansatz. Das Wissenschaftsjournal “Nature Communications” veröffentlicht die Ergebnisse in seiner aktuellen Ausgabe.

Trotz zahreicher Studien, die seit über siebig Jahren zu diesem Thema durchgeführt wurden, konnte die absolute Untergrenze der menschlichen Sehfähigkeit bisher...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress für Molekulare Medizin: Krankheiten interdisziplinär verstehen und behandeln

20.07.2016 | Veranstaltungen

Ultraschnelle Kalorimetrie: Gesellschaft für thermische Analyse GEFTA lädt zur Jahrestagung

19.07.2016 | Veranstaltungen

Das neue Präventionsgesetz aktiv gestalten

19.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Kamera für unsichtbare Felder

22.07.2016 | Physik Astronomie

3-D-Analyse von Materialien: Saarbrücker Forscher erhält renommierten US-Preis für sein Lebenswerk

22.07.2016 | Förderungen Preise

Signale der Hirnflüssigkeit steuern das Verhalten von Stammzellen im Gehirn

22.07.2016 | Biowissenschaften Chemie