Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobearbeitung mit HighPower-UKP-Lasern: deutlich wirtschaftlicher dank Multistrahl-Technologie

29.01.2013
Das Fraunhofer-Institut für Lasertechnik ILT hat für die Herstellung periodischer Mikrostrukturen ein neues Optiksystem entwickelt, das die Prozessgeschwindigkeit bei der Bearbeitung mit Ultrakurzpulslasern (UKP) im Vergleich zu herkömmlichen Systemen um ein Vielfaches steigert.

Durch die Aufteilung des Laserstrahls in eine Vielzahl von Teilstrahlen kann die Leistung von Hochleistungs-UKP-Lasern für die Mikrobearbeitung in vollem Umfang ausgeschöpft und damit die Prozesskosten erheblich gesenkt werden.


UKP-Parallelbearbeitung mit Multistrahltechnologie. Bildquelle: Fraunhofer ILT, Aachen/Volker Lannert


Strukturierung von Kolbenringen mit Multistrahltechnologie zur Oberflächenfunktionalisierung. Bildquelle: Fraunhofer ILT, Aachen

Auf dem 2. UKP-Workshop vom 17. – 18. April 2013 in Aachen stellt ein Experte unser Verfahren vor.

Ob zur Herstellung von Masken und Mikrosieben oder zur Erzeugung funktionaler Oberflächen für tribologisch hochbelastete Bauteile oder Prägewerkzeuge: Immer mehr Anwendungen benötigen eine mikrostrukturierte Oberfläche und dies auf einer immer größeren Fläche. Die Erzeugung von Strukturen auf Werkstücken im Mikrometerbereich erfordert eine besonders präzise Bearbeitung, wie sie optimal mit ultrakurz gepulster Laserstrahlung erfolgen kann.
Derzeit werden zu diesem Zweck neben mechanischen Verfahren meist Nanosekundenlaser eingesetzt, da diese aufgrund ihrer höheren Wirtschaftlichkeit besser etabliert sind als UKP-Laser. Allerdings bergen sie den Nachteil, dass bei der Nanosekunden-Bearbeitung durch Schmelzeffekte Aufwürfe entstehen und daher oft eine aufwändige Nachbearbeitung des Werkstücks erfolgen muss. Zudem begrenzen die Schmelzeffekte die Auflösung der Mikrostrukturierung.

Im Gegensatz dazu lassen sich funktionale Oberflächenstrukturen mit dem Ultrakurzpulslaser völlig nachbearbeitungsfrei erzeugen. Aufgrund der starken Lokalisierung der eingebrachten Laserenergie auf dem Werkstück und der sehr hohen Intensitäten entstehen bei der Bearbeitung keine Materialaufwürfe. Zudem erzielt die Bearbeitung mit einem UKP-Laser eine äußerst hohe Genauigkeit im Bereich weniger Mikrometer sowie eine sehr hohe Tiefenauflösung im Bereich von hundert Nanometern. Jedoch sind die Abtragraten hier vergleichsweise gering und damit die Prozesszeiten im Vergleich zur Bearbeitung mit Pulsen im Nanosekundenbereich sehr hoch. Das macht die Mikrostrukturierung mit UKP-Lasern aus wirtschaftlicher Sicht zunächst nur für hochwertige Produkte oder Werkzeuge für die Massenreplikation interessant.

Zudem kann in vielen Anwendungsfällen zur Mikrostrukturierung mit den heute gängigen industrietauglichen UKP-Lasersystemen im Leistungsbereich von 50 - 100 Watt meist nur ein Bruchteil der zur Verfügung stehenden Laserleistung eingesetzt werden, da in jeden Bearbeitungspunkt nur eine beschränkte maximale Leistung eingebracht werden kann. Eine zu hohe Leistungseinkopplung in den Bearbeitungspunkt führt insbesondere bei kleinen Fokusdurchmessern im Mikrometerbereich zur Plasmaentstehung sowie zu thermischen Effekten mit Schmelzaufwürfen und somit zu schlechten Bearbeitungsergebnissen.

Forscher des Fraunhofer ILT haben sich nun der Frage angenommen, wie eine hohe Laserleistung für die UKP-Mikrostrukturierung optimal genutzt werden kann bei gleichzeitiger Garantie eines einwandfreien Bearbeitungsergebnisses.

Wie kann die Laserleistung »auf die Straße« gebracht werden?
Eine Möglichkeit zur Ausschöpfung der verfügbaren Laserleistung für die UKP-Mikrostrukturierung besteht in einer schnellen Strahlablenkung. Dabei wird zur Sicherstellung einer hohen Abtragsqualität die Pulsenergie niedrig gehalten, durch eine hohe Pulsfrequenz gepaart mit einer hohen Scangeschwindigkeit jedoch eine hohe Flächenrate erreicht. Mit einem am Fraunhofer ILT entwickelten Polygonscanner-System lassen sich damit Scangeschwindigkeiten bis zu 350 m/s erreichen. Dies erlaubt die schnelle Verteilung hochfrequenter Laserpulse auf großen Flächen. Eine andere Möglichkeit, die derzeit am Fraunhofer ILT verfolgt wird, ist die Parallelisierung des Laserstrahlabtrags.

Durch die Aufteilung des Laserstrahls in mehrere Strahlen kann erheblich mehr Laserleistung genutzt werden. Möglich macht diese Strahlaufteilung ein diffraktives optisches Element (DOE). Es besteht aus einer Anordnung von Mikrostrukturen, die durch den Effekt der Beugung je nach Design nahezu beliebige Intensitätsverteilungen hinter dem Element erzeugen können. Das Forscher-Team am Fraunhofer ILT hat das DOE zwischen der Strahlquelle und einem Galvanometerscanner so eingebaut, dass die geteilten Laserstrahlen in den Galvanometerscanner abgebildet werden. Durch die Fokussierung der Strahlen mithilfe eines F-theta-Objektivs entsteht schließlich eine periodische Anordnung von Bearbeitungspunkten. Diese können nun über das Werkstück bewegt werden und so beliebig komplexe Muster abtragen.

Die Teilung eines Laserstrahls in 16 Teilstrahlen wurde am Fraunhofer ILT bereits erfolgreich gezeigt. Durch diese Strahlparallelisierung kann das Werkstück an 16 periodisch angeordneten Stellen gleichzeitig bearbeitet werden. Die Bearbeitungsgeschwindigkeit versechzehntfacht sich somit. In einem Laborversuch konnten Experten bereits erfolgreich die Bearbeitung mit 144 Teilstrahlen erproben, eine weitere Skalierung ist möglich.
UKP-Mikrostrukturierung auf großen Flächen wird wirtschaftlich
Künftig können mit dieser Technologie die Leistungsreserven aktueller Hochleistungs-Ultrakurzpulslaser-Systeme für die Laserbearbeitung vollständig auf dem Werkstück genutzt werden. Im gleichen Maß sinken die Prozesszeiten, somit verringern sich die gesamten Prozesskosten signifikant. Für den Anwender wird der UKP-Laser für die Herstellung periodischer Mikrostrukturen aus wirtschaftlicher Sicht nun deutlich interessanter. Die Strukturierung auch großer Flächen ist mit diesem Ansatz wirtschaftlich realisierbar. Basierend auf dieser Technologie wurde am Fraunhofer ILT eine Prototypenanlage zur Erzeugung von Mikrostrukturen mit UKP-Lasern entwickelt, die in künftigen Projekten industrietauglich gemacht werden soll. Fernziel ist es, bald auch Multi-Hundert-Watt-Laser für die Mikrostrukturierung einzusetzen.

2. UKP-Workshop vom 17.-18. April 2013 in Aachen

Eines der Themen des 2. Ultrakurzpulslaser-Workshops ist der Einsatz des UKP-Lasers zur Erzeugung ressourcensparender Mikrostrukturen für hochbelastete Bauteile. Im Rahmen des Projekts »SmartSurf« untersucht das Fraunhofer ILT zusammen mit namhaften Partnern aus der Industrie die Reibungs- und Verschleißminimierung von aufeinandertreffenden Oberflächen durch das Einbringen von wenigen Mikrometer tiefen Näpfchen. Ein Beispiel sind hier Kolbenringe in Zylinderlaufbuchsen. Das Projekt ist eingebettet in die »Effizienzfabrik« des Bundesministeriums für Bildung und Forschung (BMBF) zur Förderung ressourceneffizienter Produktionstechnologien. Nach dem Vortrag steht Ihnen unser Experte Stephan Eifel für eine Diskussion zur Verfügung. Anmeldungen zum 2. UKP-Workshop sind ab sofort unter www.ultrakurzpulslaser.de möglich.

Ansprechpartner

Dipl.-Phys. Stephan Eifel
Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-311
stephan.eifel@ilt.fraunhofer.de
Dr. Jens Holtkamp
Leiter der Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Telefon: +49 241 8906-0
Fax: +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de
http://www.ultrakurzpulslaser.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Verfahren zur Inprozesskontrolle in der Warmumformung
18.08.2017 | Fachhochschule Südwestfalen

nachricht Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen
17.08.2017 | Hochschule Pforzheim

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie