Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobearbeitung mit HighPower-UKP-Lasern: deutlich wirtschaftlicher dank Multistrahl-Technologie

29.01.2013
Das Fraunhofer-Institut für Lasertechnik ILT hat für die Herstellung periodischer Mikrostrukturen ein neues Optiksystem entwickelt, das die Prozessgeschwindigkeit bei der Bearbeitung mit Ultrakurzpulslasern (UKP) im Vergleich zu herkömmlichen Systemen um ein Vielfaches steigert.

Durch die Aufteilung des Laserstrahls in eine Vielzahl von Teilstrahlen kann die Leistung von Hochleistungs-UKP-Lasern für die Mikrobearbeitung in vollem Umfang ausgeschöpft und damit die Prozesskosten erheblich gesenkt werden.


UKP-Parallelbearbeitung mit Multistrahltechnologie. Bildquelle: Fraunhofer ILT, Aachen/Volker Lannert


Strukturierung von Kolbenringen mit Multistrahltechnologie zur Oberflächenfunktionalisierung. Bildquelle: Fraunhofer ILT, Aachen

Auf dem 2. UKP-Workshop vom 17. – 18. April 2013 in Aachen stellt ein Experte unser Verfahren vor.

Ob zur Herstellung von Masken und Mikrosieben oder zur Erzeugung funktionaler Oberflächen für tribologisch hochbelastete Bauteile oder Prägewerkzeuge: Immer mehr Anwendungen benötigen eine mikrostrukturierte Oberfläche und dies auf einer immer größeren Fläche. Die Erzeugung von Strukturen auf Werkstücken im Mikrometerbereich erfordert eine besonders präzise Bearbeitung, wie sie optimal mit ultrakurz gepulster Laserstrahlung erfolgen kann.
Derzeit werden zu diesem Zweck neben mechanischen Verfahren meist Nanosekundenlaser eingesetzt, da diese aufgrund ihrer höheren Wirtschaftlichkeit besser etabliert sind als UKP-Laser. Allerdings bergen sie den Nachteil, dass bei der Nanosekunden-Bearbeitung durch Schmelzeffekte Aufwürfe entstehen und daher oft eine aufwändige Nachbearbeitung des Werkstücks erfolgen muss. Zudem begrenzen die Schmelzeffekte die Auflösung der Mikrostrukturierung.

Im Gegensatz dazu lassen sich funktionale Oberflächenstrukturen mit dem Ultrakurzpulslaser völlig nachbearbeitungsfrei erzeugen. Aufgrund der starken Lokalisierung der eingebrachten Laserenergie auf dem Werkstück und der sehr hohen Intensitäten entstehen bei der Bearbeitung keine Materialaufwürfe. Zudem erzielt die Bearbeitung mit einem UKP-Laser eine äußerst hohe Genauigkeit im Bereich weniger Mikrometer sowie eine sehr hohe Tiefenauflösung im Bereich von hundert Nanometern. Jedoch sind die Abtragraten hier vergleichsweise gering und damit die Prozesszeiten im Vergleich zur Bearbeitung mit Pulsen im Nanosekundenbereich sehr hoch. Das macht die Mikrostrukturierung mit UKP-Lasern aus wirtschaftlicher Sicht zunächst nur für hochwertige Produkte oder Werkzeuge für die Massenreplikation interessant.

Zudem kann in vielen Anwendungsfällen zur Mikrostrukturierung mit den heute gängigen industrietauglichen UKP-Lasersystemen im Leistungsbereich von 50 - 100 Watt meist nur ein Bruchteil der zur Verfügung stehenden Laserleistung eingesetzt werden, da in jeden Bearbeitungspunkt nur eine beschränkte maximale Leistung eingebracht werden kann. Eine zu hohe Leistungseinkopplung in den Bearbeitungspunkt führt insbesondere bei kleinen Fokusdurchmessern im Mikrometerbereich zur Plasmaentstehung sowie zu thermischen Effekten mit Schmelzaufwürfen und somit zu schlechten Bearbeitungsergebnissen.

Forscher des Fraunhofer ILT haben sich nun der Frage angenommen, wie eine hohe Laserleistung für die UKP-Mikrostrukturierung optimal genutzt werden kann bei gleichzeitiger Garantie eines einwandfreien Bearbeitungsergebnisses.

Wie kann die Laserleistung »auf die Straße« gebracht werden?
Eine Möglichkeit zur Ausschöpfung der verfügbaren Laserleistung für die UKP-Mikrostrukturierung besteht in einer schnellen Strahlablenkung. Dabei wird zur Sicherstellung einer hohen Abtragsqualität die Pulsenergie niedrig gehalten, durch eine hohe Pulsfrequenz gepaart mit einer hohen Scangeschwindigkeit jedoch eine hohe Flächenrate erreicht. Mit einem am Fraunhofer ILT entwickelten Polygonscanner-System lassen sich damit Scangeschwindigkeiten bis zu 350 m/s erreichen. Dies erlaubt die schnelle Verteilung hochfrequenter Laserpulse auf großen Flächen. Eine andere Möglichkeit, die derzeit am Fraunhofer ILT verfolgt wird, ist die Parallelisierung des Laserstrahlabtrags.

Durch die Aufteilung des Laserstrahls in mehrere Strahlen kann erheblich mehr Laserleistung genutzt werden. Möglich macht diese Strahlaufteilung ein diffraktives optisches Element (DOE). Es besteht aus einer Anordnung von Mikrostrukturen, die durch den Effekt der Beugung je nach Design nahezu beliebige Intensitätsverteilungen hinter dem Element erzeugen können. Das Forscher-Team am Fraunhofer ILT hat das DOE zwischen der Strahlquelle und einem Galvanometerscanner so eingebaut, dass die geteilten Laserstrahlen in den Galvanometerscanner abgebildet werden. Durch die Fokussierung der Strahlen mithilfe eines F-theta-Objektivs entsteht schließlich eine periodische Anordnung von Bearbeitungspunkten. Diese können nun über das Werkstück bewegt werden und so beliebig komplexe Muster abtragen.

Die Teilung eines Laserstrahls in 16 Teilstrahlen wurde am Fraunhofer ILT bereits erfolgreich gezeigt. Durch diese Strahlparallelisierung kann das Werkstück an 16 periodisch angeordneten Stellen gleichzeitig bearbeitet werden. Die Bearbeitungsgeschwindigkeit versechzehntfacht sich somit. In einem Laborversuch konnten Experten bereits erfolgreich die Bearbeitung mit 144 Teilstrahlen erproben, eine weitere Skalierung ist möglich.
UKP-Mikrostrukturierung auf großen Flächen wird wirtschaftlich
Künftig können mit dieser Technologie die Leistungsreserven aktueller Hochleistungs-Ultrakurzpulslaser-Systeme für die Laserbearbeitung vollständig auf dem Werkstück genutzt werden. Im gleichen Maß sinken die Prozesszeiten, somit verringern sich die gesamten Prozesskosten signifikant. Für den Anwender wird der UKP-Laser für die Herstellung periodischer Mikrostrukturen aus wirtschaftlicher Sicht nun deutlich interessanter. Die Strukturierung auch großer Flächen ist mit diesem Ansatz wirtschaftlich realisierbar. Basierend auf dieser Technologie wurde am Fraunhofer ILT eine Prototypenanlage zur Erzeugung von Mikrostrukturen mit UKP-Lasern entwickelt, die in künftigen Projekten industrietauglich gemacht werden soll. Fernziel ist es, bald auch Multi-Hundert-Watt-Laser für die Mikrostrukturierung einzusetzen.

2. UKP-Workshop vom 17.-18. April 2013 in Aachen

Eines der Themen des 2. Ultrakurzpulslaser-Workshops ist der Einsatz des UKP-Lasers zur Erzeugung ressourcensparender Mikrostrukturen für hochbelastete Bauteile. Im Rahmen des Projekts »SmartSurf« untersucht das Fraunhofer ILT zusammen mit namhaften Partnern aus der Industrie die Reibungs- und Verschleißminimierung von aufeinandertreffenden Oberflächen durch das Einbringen von wenigen Mikrometer tiefen Näpfchen. Ein Beispiel sind hier Kolbenringe in Zylinderlaufbuchsen. Das Projekt ist eingebettet in die »Effizienzfabrik« des Bundesministeriums für Bildung und Forschung (BMBF) zur Förderung ressourceneffizienter Produktionstechnologien. Nach dem Vortrag steht Ihnen unser Experte Stephan Eifel für eine Diskussion zur Verfügung. Anmeldungen zum 2. UKP-Workshop sind ab sofort unter www.ultrakurzpulslaser.de möglich.

Ansprechpartner

Dipl.-Phys. Stephan Eifel
Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-311
stephan.eifel@ilt.fraunhofer.de
Dr. Jens Holtkamp
Leiter der Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Telefon: +49 241 8906-0
Fax: +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de
http://www.ultrakurzpulslaser.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht UV-Kugel macht Lackieren einfach und schnell
16.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Vorzüge von 3D-Druck und Spritzguss kombiniert
16.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics