Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtfeuer im Nanobereich - Was blinkende Moleküle über die Zellstruktur verraten

12.05.2009
Die Entwicklung hochauflösender mikroskopischer Verfahren wird seit einigen Jahren intensiv vorangetrieben.

Ziel ist dabei, selbst im Nanometerbereich eine hohe räumliche Auflösung zu erreichen, mit der sich auch sehr kleine und nah zusammenliegende Moleküle exakt abbilden lassen. Einem Forscherteam um Professor Philip Tinnefeld vom Department Physik der Ludwig-Maximilians-Universität (LMU) München ist es nun gelungen, fluoreszierende Moleküle zu entwickeln, die sich durch zwei gegensätzlich wirkende chemische Prozesse gezielt an- und ausschalten lassen.

Dieser Mechanismus funktioniert - anders als bei herkömmlichen Verfahren - auch in Anwesenheit von Sauerstoff und lässt sich auf ein breites Spektrum von Farbstoffen anwenden. Daher könnte die von den Forschern "Blinkmikroskopie" getaufte Methode auch bei lebenden Zellen zum Einsatz kommen, um dort die Positionen sehr eng benachbarter Moleküle zu bestimmen. Aber auch in der Nanotechnologie könnte das neue Verfahren helfen, präzise gesteuerte elektro-optische Schaltelemente zu entwickeln. (PNAS Early Online Edition, 11. Mai 2009).

Die räumliche Auflösungsfähigkeit eines optischen Mikroskops ist durch die Wellenlänge des Lichts begrenzt. So können mit einem herkömmlichen Mikroskop Strukturen, die kleiner als 200 bis 300 Nanometer - also Millionstel Millimeter - sind, nicht mehr eindeutig voneinander abgegrenzt werden. Allerdings stehen in der Nanotechnologie oder in der Zellbiologie sehr viel kleinere Teilchen im Blickpunkt der Forschung. Eine höhere Auflösung ist zwar mit elektronenmikroskopischen Verfahren möglich, doch diese sind sehr aufwändig und besitzen gewisse Nachteile - zum Beispiel erlauben sie keine Analyse lebender Strukturen. Mithilfe spezifischer Techniken lässt sich jedoch auch die optische Mikroskopie so verbessern, dass eine Auflösung im Bereich von wenigen Nanometern möglich wird. Dabei werden die Positionen einzelner, farbig markierter Moleküle in mehreren Schritten separat bestimmt.

Zu diesem Gebiet der Superauflösungsmikroskopie hat eine Forschergruppe der Ludwig-Maximilians-Universität (LMU) nun einen entscheidenden Beitrag geleistet. Professor Philip Tinnefeld und seine Mitarbeiter vom Lehrstuhl für Angewandte Physik haben einen Weg gefunden, das Leuchten eines gewöhnlichen fluoreszierenden Moleküls mithilfe photochemischer Prozesse gezielt "An"- und "Aus" zu schalten. Die Zeitdauer des "An"- und "Aus"-Zustandes kann dabei durch die Zusammensetzung der Chemikalien gezielt gesteuert werden. Zudem erwies sich der so erhaltene Schalter als außergewöhnlich langlebig: Er kann zwischen 400 und 3.000 Mal ein- und ausgeschaltet werden, bevor das Molekül schließlich zerfällt.

Um die blinkenden Teilchen zu erzeugen, nutzten Tinnefeld und sein Team in ihrer von der Deutschen Forschungsgemeinschaft und vom Bundesministerium für Bildung und Forschung geförderten Studie einen Farbstoff aus der Klasse der Oxazine. Dieser besitzt die natürliche Eigenschaft der Fluoreszenz, er sendet also bei der Bestrahlung mit Licht selbst kurzzeitig ein Leuchten aus. Das An- und Ausschalten dieses Leuchtens gelang den Forschern mithilfe einer sogenannten Redox-Reaktion. Bei diesem chemischen Prozess gibt eine Substanz - das Reduktionsmittel - Elektronen ab, die wiederum von einer zweiten Substanz, dem Oxidationsmittel, aufgenommen werden. Zunächst fügten die Forscher dem Oxazin ein Reduktionsmittel bei, so dass der Farbstoff ein Elektron aufnahm und der Leuchteffekt "ausgeschaltet" wurde. Dieser Zustand blieb anschließend über mehrere Minuten hinweg erhalten.

Mischten die Wissenschaftler der Substanz nun ein Oxidationsmittel bei, gab das Oxazin das zuvor erhaltene Elektron wieder ab und "schaltete" sich dadurch stabil zurück in den Ausgangszustand. "Das Prinzip besitzt wesentliche Vorteile gegenüber bisher entwickelten chemischen Schaltern, die sehr komplizierten chemischen Prozessen unterliegen und oft nur eine begrenzte Lebensdauer haben", erläutert Tinnefeld. "Außerdem lässt es sich auf viele verschiedene Farbstoffe anwenden." Ein weiterer Vorteil der neuen Methode: Sie funktioniert auch in Anwesenheit von Sauerstoff, der sonst die Farbstoffe häufig zerstört. Dies ermöglicht den Einsatz auch bei lebenden Zellen, in deren Milieu immer auch Sauerstoff eine Rolle spielt.

Tatsächlich gelang den Biophysikern im nächsten Schritt ihrer Studie der Nachweis, dass sich die neue Methode auch auf feinste Strukturen in Zellen anwenden lässt. Dazu brachten die Forscher sogenannte Aktinfilamente, die Teil des Zytoskeletts von Körperzellen sind, auf eine Glasoberfläche auf. Anschließend stellten sie die Konzentrationen des Reduktions- und des Oxidationsmittels so ein, dass die einzelnen Moleküle nur ab und zu aufleuchteten. Das anschließende "Blinkkonzert" der Moleküle nahmen sie mit einer Spezialkamera auf und konnten so im Nachhinein die Lage jedes einzelnen Moleküls exakt rekonstruieren. "Dadurch konnten wir eine Auflösung von wenigen Nanometern erreichen und Strukturen sichtbar machen, die man mit bisherigen Methoden nicht sehen konnte", sagt Tinnefeld.

Künftig wollen die Forscher die verwendeten Fluoreszenzfarbstoffe gezielt an die Umgebungsbedingungen in lebenden Zellen anpassen. "Außerdem planen wir zusammen mit Münchner Biologen Projekte, in denen die Blinkmikroskopie bei unterschiedlichsten biologischen Fragestellungen zum Einsatz kommt", sagt Tinnefeld. So könnte das Verfahren zum Beispiel dazu beitragen, die Aktivität künstlich in die Zelle eingeschleuster Moleküle zu beobachten. Aber auch eine Reihe anderer Anwendungsbereiche sind für den neuen Molekülschalter denkbar, insbesondere in der Nanotechnologie. "Das fluoreszierende Molekül lässt sich nicht nur chemisch, sondern auch elektrisch ein- und ausschalten", erläutert Tinnefeld. "Daher könnte es auch als elektro-optisches Bauelement in PCs eingesetzt werden - zum Beispiel zur Datenspeicherung oder für farbige Displays." (CA/suwe)

Das Projekt wurde im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich (NIM)" durchgeführt. Das Cluster hat es sich zum Ziel gesetzt, funktionale Nanostrukturen für Anwendungen in der Informationsverarbeitung und den Lebenswissenschaften zu erforschen und zur Einsatzreife zu bringen.

Publikation:
"Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy";
Jan Vogelsang, Thorben Cordes, Carsten Forthmann, Christian Steinhauer und Philip Tinnefeld;
PNAS Early Online Edition, 11. Mai 2009;
DOI: 10.1073_pnas.0811875106
Ansprechpartner:
Prof. Dr. Philip Tinnefeld
Angewandte Physik - Biophysik & Center for NanoScience
Tel: +49 89 - 2180 - 1438
Fax: +49 89 - 2180 - 2050
E-Mail: Philip.Tinnefeld@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.biophysik.physik.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise