Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leichtmetalloberflächen für die Zukunft

09.03.2015

Fraunhofer IPA senkt Energieverbrauch beim Anodisieren

Leichtmetalle wie Aluminium oder Titan werden in heutigen Produktionen immer wichtiger. Sie verfügen über ein geringes Gewicht und besitzen gleichzeitig eine hohe Festigkeit. Jedoch ist ihre Oberfläche zu weich und nicht ausreichend korrosionsbeständig, um hohen Belastungen standzuhalten.

Der Oberflächenbehandlung von Aluminium und Titan kommt im Zeitalter des Leichtbaus daher eine immer größere Bedeutung zu. Durch Verfahren wie dem Anodisieren erhalten Bauteile aus Leichtmetallen eine harte, korrosionsbeständige Schutzschicht.

Die Abteilung Galvanotechnik des Fraunhofer IPA hat sich in den letzten Jahren ein umfassendes Know-how im Bereich Oberflächenbehandlung von Leichtmetallen aufgebaut und dabei unter anderem ein Verfahren entwickelt, das gegenüber herkömmlichen Verfahren 40 Prozent Energie spart.

Anodisierte Leichtmetalle – allen voran Aluminium – finden sich im Alltag überall: »Man kann kaum einen Gegenstand aus Aluminium in die Hand nehmen, der nicht anodisiert wurde«, erklärt Klaus Schmid, Gruppenleiter in der Abteilung »Galvanotechnik« am Fraunhofer IPA. Als Beispiele nennt er iPhones, Laptops, Kaffeemaschinen oder Aktenkoffer.

Auch in industriellen Produktionen ist das Verfahren längst nicht mehr wegzudenken. So werden eine Vielzahl von Bauteilen in der Luft- und Raumfahrttechnik, dem Maschinen- und Anlagenbau und der Automobilindustrie aus anodisiertem Aluminium verwendet. Weiterhin kommt in der Medizintechnik und der Luft- und Raumfahrttechnik anodisiertes Titan zum Einsatz, beispielsweise bei medizinischen Schrauben oder Prothesen.

Entwicklung moderner Verfahren – Verschiedene Parameter werden berücksichtigt

Schmid schreibt der Optimierung des Anodisierens in Zukunft einen hohen wirtschaftlichen Stellenwert zu: »Einerseits sind Leichtbaustoffe in vielen Branchen zu einem wichtigen Schlüsselelement herangewachsen. Anderseits ist es für Unternehmen heute ein entscheidendes Wettbewerbskriterium, energieeffizient zu produzieren.« Der Gruppenleiter ist zuversichtlich, mit seinem Team Firmen aus dem Bereich Oberflächenbehandlung von Leichtmetallen zu einer besseren Energieausbeute beim Anodisieren und zu Schichten mit optimierten Eigenschaften zu verhelfen.

»Bei unseren Untersuchungen behalten wir verschiedene Parameter gleichermaßen im Auge, beispielsweise die gezielte Schichtentwicklung oder die Erweiterungsmöglichkeiten der Verfahren«, so Schmid. Diese Arbeits-weise ermöglicht es dem Team, individuelle Anforderungen zu bedienen und sowohl kleine Beschichtungsunternehmen als auch große Inhousebeschichter zu unterstützen.

Energieverbrauch der Hartanodisation um 40 Prozent gesenkt

Im Rahmen eines öffentlichen Forschungsprojekts ist es den IPA-Wissenschaftlern beispielsweise gelungen, den Energieverbrauch des Anodisierverfahrens ihres Partnerunternehmens um 40 Prozent zu senken. Dabei haben die Galvanotechnik-Experten die herkömmliche Technik erweitert. »Unsere Idee lautet: ‚weniger Wärmeeintrag, weniger Kühlung‘«, erklärt der Gruppenleiter.

Dazu muss man wissen, dass das Anodisieren zu einem der energieintensivsten Verfahren der Galvanotechnik gehört. Beim Anodisieren wird das Bauteil unter Strom gesetzt. Dabei findet eine Reaktion statt, die das Metall an der Oberfläche in eine harte und stabile Oxidschicht umwandelt. Bei dieser Reaktion entsteht sehr viel Wärme, die mit Hilfe von Kühlmaschinen abgeführt werden muss. Um das Prinzip »weniger Wärmeeintrag, weniger Kühlung« umzusetzen, haben die Wissenschaftler anstelle des herkömmlichen Gleichstroms mit der Pulsanodisation gearbeitet.

Dabei wird wesentlich weniger Energie zugeführt als bei konventionellen Verfahren. Weiterhin erlaubt die Methode, energieeffiziente Kühltechniken einzusetzen. Insbesondere bei der Hartanodisierung, die eine besonders starke Kühlung der Elektrolyte erfordere, könne so noch mehr Energie eingespart werden, freut sich Schmid.

Die Entwicklung geht weiter

»Die Entwicklungsmöglichkeiten der Anodisierverfahren sind noch lange nicht ausgeschöpft«, ist sich Schmid sicher. Sein interdisziplinäres Team, bestehend aus Werkstoffwissenschaftlern, Ingenieuren und Chemikern, ist bestens für künftige Herausforderungen gerüstet. So arbeiten die Wissenschaftler derzeit an einer Methode, um Anodisierprozesse in Echtzeit zu überwachen. Mit den daraus gewonnenen Informationen können die Verfahren noch gezielter optimiert werden.

Fachlicher Ansprechpartner
Klaus Schmid | Telefon +49 711 970-1760 | klaus.schmid@ipa.fraunhofer.de | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Pressekommunikation
Jörg-Dieter Walz | Telefon +49 711 970-1667 | presse@ipa.fraunhofer.de
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | Nobelstraße 12 | 70569 Stuttgart

Redaktion
Ramona Hönl | Telefon +49 711 970-1638 | ramona.hoenl@ipa.fraunhofer.de

Weitere Informationen:

http://www.ipa.fraunhofer.de

Jörg-Dieter Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics