Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kupferabscheidung für winzige 3D-Objekte

20.01.2016

Mit einem neuen Mikro-3D-Druckverfahren können Wissenschaftler winzige und komplexe Metallbauteile einfach herstellen. Die verwendete Technik haben ETH-Forscher vor Jahren für die biologische Forschung konzipiert und nun für einen ganz anderen Anwendungsbereich weiterentwickelt.

Wissenschaftler an der ETH Zürich entwickelten ein neues Verfahren für den Mikro-3D-Druck. Damit ist es auch möglich, auf einfache Weise und in einem Arbeitsgang winzige, teils auch überhängende Strukturen herzustellen. Dereinst könnten damit zum Beispiel komplexe Uhrenbestandteile oder Mikrowerkzeuge für die Schlüssellochchirurgie hergestellt werden.


Die hier in Mikroskopiebildern gezeigten Objekte sind 15 bis 35 Mikrometer breit. Zum Vergleich: Die Breite eines menschlichen Haars beträgt etwa 50 Mikrometer.

ETH Zürich / Luca Hirt


Die hier in Mikroskopiebildern gezeigten Objekte sind 15 bis 35 Mikrometer breit. Zum Vergleich: Die Breite eines menschlichen Haars beträgt etwa 50 Mikrometer.

ETH Zürich / Luca Hirt

Bei den meisten bestehenden Mikro-3D-Druckverfahren sind überhängende Strukturen nur mit einem Trick möglich: Eine zuvor angefertigte Schablone dient während des Druckprozesses als Platzhalter unter einem zu druckenden Überhang.

Die Schablone muss nach dem Drucken entfernt werden. Bei der neuen, von ETH-Doktorand Luca Hirt vom Labor für Biosensoren und Bioelektronik entwickelten Technik kann der Druckkopf auch freihängend seitwärts drucken. Überhänge können damit ohne Schablonen gedruckt werden.

Winzige Pipette

Die neue Technik ist eine Weiterentwicklung des vor mehreren Jahren an der ETH Zürich entwickelten FluidFM-Systems (siehe ETH-Life-Artikel [http://www.ethlife.ethz.ch/archive_articles/090626_nanoinjection_sch/index/] vom 26.06.2009). Zentraler Bestandteil dieses Systems ist eine bewegliche, an eine Blattfeder gekoppelte Mikropipette, die äusserst präzise steuerbar ist.

FluidFM wird heute vor allem in der biologischen Forschung und der Medizin verwendet, um beispielsweise Zellen zu sortieren und zu analysieren, sowie um Stoffe in einzelne Zellen zu injizieren. Das System und wird seit drei Jahren vom ETH-Spin-off Cytosurge kommerziell vertrieben.

Im Rahmen seiner Doktorarbeit an der ETH Zürich untersucht Luca Hirt die Möglichkeit, FluidFM auch für Druckverfahren zu verwenden. Insbesondere interessiert er sich dafür, damit in Lösung befindliche Metalle und andere Stoffe auf einer leitenden Grundplatte elektrochemisch abzuscheiden.

Elektrochemische Reaktion an der Spitze

Im nun entwickelten System funktioniert das so: Auf einer Grundplatte aus Gold befindet sich ein Flüssigkeitstropfen. In diesen hinein ragt die Spitze der Mikropipette und dient als Druckkopf. In der Pipette fliesst langsam und konstant eine Kupfersulfatlösung.

Weil die Wissenschaftler mit einer Elektrode eine Spannungsdifferenz zwischen Flüssigkeitstropfen und Grundplatte anlegen, kommt es unter der Pipettenspitze zu einer elektrochemischen Reaktion: Das aus der Pipette austretende Kupfersulfat reagiert zu festem Kupfer, das sich als winziges 3D-Pixel auf der Grundplatte abscheidet.

Indem die Forschenden die Mikropipette computergesteuert bewegen, können sie Pixel um Pixel und Schicht um Schicht dreidimensionale Objekte drucken. Die räumliche Auflösung hängt dabei von der Grösse der Pipettenöffnung ab, welche die Grösse der Kupferablagerungen bestimmt.

Derzeit können die Wissenschaftler einzelne 3D-Pixel von 800 Nanometer bis gut fünf Mikrometer Durchmesser erzeugen und sie zu grösseren dreidimensionalen Objekten kombinieren. Im Rahmen einer ersten Machbarkeitsstudie sind etliche spektakuläre Mikroobjekte entstanden.

Sie bestehen aus nicht-porösem, reinem Kupfer und sind mechanisch stabil, wie Untersuchungen von Wissenschaftlern der Gruppe von Ralph Spolenak, Professor für Nanometallurgie an der ETH Zürich, zeigten. Zu den eindrucksvollsten Objekten dürften drei ineinander verschachtelte Mikrosprialen gehören, welche die ETH-Forschenden in einem Arbeitsschritt und ohne Schablone herstellten.

«Nicht nur Kupfer, sondern auch andere Metalle lassen sich damit drucken», sagt Tomaso Zambelli, Privatdozent und Gruppenleiter am Labor für Biosensoren und Bioelektronik der ETH Zürich. Und selbst für den 3D-Druck von Polymeren und Verbundmaterialien könnte sich FluidFM eignen, sagt er.

Ein Vorteil der neuen Methode gegenüber anderen Mikro-3D-Druckverfahren ist, dass über die Auslenkung der Blattfeder, an welche die Mikropipette gekoppelt ist, die Kräfte gemessen werden können, die auf die Pipettenspitze wirken. «Dieses Signal können wir als Feedback nutzen. Im Gegensatz zu anderen 3D Druck-Systemen erkennt unseres, welche Bereiche des Objekts bereits gedruckt sind», sagt ETH-Doktorand Hirt. Dies helfe, den Druckprozess zu automatisieren.

Erfolgreiche Zusammenarbeit mit Spin-off

Die Wissenschaftler haben die Methode zum Patent angemeldet. Das ETH-Spin-off Cytosurge hat die Methode von der ETH Zürich lizenziert. Pascal Behr war vor mehreren Jahren an der ETH massgeblich an der Entwicklung von FluidFM beteiligt. Heute ist er CEO von Cytosurge.

«Wir sehen in dem Druckverfahren ein grosses Marktpotenzial und eine Chance für unsere Firma, uns weiter zu diversifizieren», sagt er. «Von der Idee, FluidFM im Mikro-3D-Druck einzusetzen, sind wir überzeugt. Nun geht es darum, diese Anwendung zu optimieren, gemeinsam mit interessierten Forschern an Hochschulen und in der Industrie – etwa in der Uhren-, Medizinaltechnik- und Automobilbranche.»

Eine erste Anwendung sieht Behr im Bereich Rapid Prototyping, der schnellen und einfachen Herstellung von Mikrobauteil-Prototypen mittels 3D-Druck.

Die langjährige Zusammenarbeit von ETH Zürich und dem Spin-off Cytosurge wird ebenfalls weitergehen. «Es ist ein gegenseitiges Geben und Nehmen, von dem beide Seiten profitieren», sagt Zambelli. Cytosurge stellte der ETH jeweils die neusten Geräte zur Verfügung. Die ETH-Wissenschaftler können diese für ihre Forschung verwenden. Sie helfen dabei, die Geräte zu testen und können Anregungen für Verbesserungen und Weiterentwicklungen einbringen.

Literaturhinweis

Hirt L, Ihle S, Pan Z, Dorwling-Carter L, Reiser A, Wheeler JM, Spolenak R, Vörös J, Zambelli T: Template-Free 3D Microprinting of Metal Using a Force-Controlled Nanopipette for Layer-by-Layer Electrodepostion. Advanced Materials 2016, doi: 10.1002/adma.201504967 [http://dx.doi.org/10.1002/adma.201504967]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/01/kupferabsc...

Fabio Bergamin | ETH Zürich

Weitere Berichte zu: Bioelektronik Biosensoren Blattfeder Cytosurge ETH FluidFM Mikropipette Pipette Pipettenspitze Zellen

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Elektrodenmaterialien aus der Mikrowelle
18.10.2017 | Technische Universität München

nachricht Metallisches Fused Filament Fabrication - Neues Verfahren zum metallischen 3D-Druck
12.10.2017 | Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise