Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kostengünstige Laseranlage für die großflächige Nano- und Mikro-Strukturierung

20.06.2014

Strukturen im Mikro- und Submikrometer-Maßstab stellen ein schnell wachsendes Anwendungsfeld dar. Das Fraunhofer IWS Dresden hat zur Herstellung derartiger Strukturen jetzt eine komplette Lösung entwickelt.

Mit dem Verfahren können erstmals auch Flächen bis 500 x 500 mm² in wenigen Minuten strukturiert werden. Auf der Lasermesse LASYS in Stuttgart stellt das Fraunhofer IWS Dresden das neue kompakte System für die Mikrostrukturierung und Oberflächenfunktionalisierung von Metallen vor. Das kompakte System kann an die jeweiligen Kundenwünsche angepasst werden und Arrays mit Strukturbreiten von 150 nm bis 20 µm herstellen.


Optischer Bearbeitungskopf des DLIP-µFab Systems am Fraunhofer IWS Dresden

Fraunhofer IWS Dresden


Mittels DLIP strukturiertes dekoratives Element (Frauenkirche Dresden) auf Edelstahl

Fraunhofer IWS Dresden

Das Fraunhofer IWS Dresden nutzt für die großflächige Mikrostrukturierung und Funktionalisierung die direkte Laserinterferenzstrukturierung (kurz: DLIP abgeleitet vom englischen Begriff Direct Laser Interference Patterning).

Hierbei handelt es sich um eine Technik, die eine großflächige und maskenlose Lithographie zur Herstellung komplexer Strukturen in einem Prozessschritt ermöglicht (Abb. 1). Konventionelle Strukturierungstechniken sind demgegenüber entweder zu langsam (sequentielle Verfahren) oder zu unflexibel (Maskentechniken).

Die direkte Laserinterferenzstrukturierung erlaubt die Herstellung 2-, 2,5- und 3-dimensionaler Mikrostrukturen auf Oberflächen sowohl einfacher als auch komplexer Bauteilgeometrie. Um die Interferenzstruktur zu erzeugen, werden 2 oder 3 kohärente Laserstrahlen eines gepulsten Lasers auf ebenen bzw. gekrümmten Oberflächen überlagert.

In den dabei erzeugten Intensitätsmaxima der Lichtwellen wird das Material über regelbare Prozessparameter wie Pulsenergie und Wellenlänge lokal abgetragen oder modifiziert. So können die elektrischen, chemischen und/oder mechanischen Eigenschaften der Oberflächen von Polymeren, Metallen, Keramiken und Einzel- oder Multischichten periodisch variiert werden.

Das am Fraunhofer IWS Dresden entwickelte System (DLIP-µFab) erlaubt außerdem die lokale Variation der Strukturbreite, und somit die Herstellung von holographischen Strukturen direkt auf Metall (Abb. 2).

In Abhängigkeit vom verwendeten Material und der Topographie der Strukturen werden mit dem Verfahren des IWS neue Anwendungen, z. B. in der Automobilindustrie oder der Medizintechnik, realisier- und bezahlbar. Einige Beispiele werden auf der Messe in Stuttgart und im Institut in Dresden präsentiert.

Überzeugen Sie sich selbst von der Leistungsfähigkeit des Systems und besuchen Sie uns auf dem Fraunhofer IWS Stand, Halle 4, Stand C31 auf der LASYS 2014 oder kontaktieren Sie die Experten im Fraunhofer IWS Dresden.

Ihre Ansprechpartner für weitere Informationen:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstraße 28

Prof. Dr. Andrés Lasagni
Telefon: (0351) 83391 3007
Telefax: (0351) 83391 3300
E-Mail: andreas-fabian.lasagni@iws.fraunhofer.de

Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de

Weitere Informationen:

http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/de/presseundmedien/presseinformationen.html

Dr. Ralf Jaeckel | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Dresdner Forscher drucken die Welt von Morgen
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen