Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Hüpfende“ Moleküle revolutionieren Oberflächenbearbeitung

08.03.2012
Forscher entwickeln neues Verfahren, um Oberflächen von Isolierschichten im molekularen Bereich bearbeiten zu können.

Rastersondenmikroskope haben uns in den letzten Jahrzehnten faszinierende Einblicke in die Welt der Atome und Moleküle beschert. Die Entwicklung von speziellen Rastersondenmethoden hat es zudem ermöglicht, künstliche Strukturen auf Materialoberflächen Atom für Atom und damit präzise aufzubauen.


Mit der Spitze eines Rastertunnelmikroskops werden die Moleküle angeregt und so auf der Oberfläche der Isolierschichten bewegt. Abbildung: Universität

Dabei werden unterschiedliche Atome auf eine Oberfläche aufgebracht und dann mithilfe einer ganz feinen Nadel – eins nach dem anderen – an den richtigen Platz manövriert. Diese sogenannte atomare Manipulation gelang allerdings bisher nur auf der Oberfläche von Metallen und Halbleitern, nicht aber auf Isolatoren.

Einem Forscherteam der Universität Regensburg ist in diesem Zusammenhang ein wichtiger Schritt gelungen. Dr. Ingmar Swart und seine Kolleginnen und Kollegen vom Institut für Experimentelle und Angewandte Physik konnten organische Moleküle, die auf der Oberfläche von ultradünnen Isolierschichten anhaften, gezielt verschieben. Die Wissenschaftler benutzten dazu zunächst die Spitze eines Rastertunnelmikroskops für die Platzierung der Moleküle auf der Oberfläche. Der Trick bestand nun darin, die Moleküle mithilfe von Strom anzuregen und zum „Hüpfen“ zu bringen. Auf dieser Grundlage konnten die Moleküle gezielt verschoben und in die gewünschte Richtung bewegt werden.

Die Technik konnte von den Regensburger Forschern bereits mit unterschiedlichen organischen Molekülen erfolgreich durchgeführt werden. Das neue Verfahren eröffnet die Möglichkeit, in Zukunft ganze Molekülstrukturen auf der Oberfläche von Isolierschichten zu platzieren und anzupassen. Dies könnte einen Durchbruch für die sogenannte molekulare Elektronik bedeuten, bei der einzelne Moleküle die Schaltelemente heutiger Halbleiterbauelemente ersetzen sollen.

Das Regensburger Forscherteam wird von Prof. Dr. Jascha Repp geleitet, der seit 2007 an der Universität Regensburg eine Lichtenberg-Professur inne hat, die die VolkswagenStiftung mit rund 1,5 Millionen Euro finanziert.

Die Ergebnisse der Regensburger Wissenschaftler sind vor kurzem in der renommierten Fachzeitschrift „Nano Letters“ erschienen (DOI: 10.1021/nl204322r).

Ansprechpartner für Medienvertreter:
Prof. Dr. Jascha Repp
Universität Regensburg
Institut für Experimentelle und Angewandte Physik
Tel.: 0941 943-4201
Jascha.Repp@physik.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie