Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiß wie der Ofen, kalt wie der Mars

09.08.2013
Es ist heiß in Deutschland. Wir Menschen haben präzise Sensoren für Temperaturen, daher stimmt unser Körpergefühl sehr gut mit von elektrischen Sensoren vorhergesagten Werten überein. Aber wie genau funktionieren Temperaturmesser an extremen Orten wie beispielsweise in Hochöfen oder auf fremden Planeten?

Ein gewaltiger Sandsturm fegt durch die Wüste, aber es ist nicht heiß, im Gegenteil, es sind -35°C. Gäbe es Wasser, das zu Schnee gefrieren könnte, könnte man auf den riesigen Bergen Wintersport betreiben. Der NASA-Roboter Curiosity setzt unbeirrt seinen Weg fort, um auf dem Mars Spuren von Wasser und Leben zu finden.


Lichtleitfasern aus Saphir eignen sich für Anwendungen im Extrem: der Messung von Temperaturen über 1200°C. IPHT/Döring

Mit an Bord sind Temperatursensoren aus dem Institut für Photonische Technologien Jena e.V. (IPHT). Seit der Landung auf dem roten Planeten zeichnen sie zuverlässig die Bodentemperatur auf. Keine leichte Aufgabe bei Temperaturunterschieden von 150°C und ohne Stromzufuhr.

„Unsere Sensoren musste schon vor der Reise einiges einstecken, so beispielsweise Vibrationstests mit Beschleunigungen von bis zu 8 g. Trotz der außergewöhnlichen mechanischen und thermischen Belastungen müssen die Sensoren eine hohe Sensitivität aufweisen“, beschreibt Dr. Ernst Keßler, Projektleiter am IPHT, die Leistungsfähigkeit der Sensoren. Sie basieren auf dem thermoelektrischen Prinzip und besitzen 100 in Reihe geschaltete Thermopaare.

Diese bestehen aus zwei thermoelektrischen Materialien, die in der Empfängerfläche sowie auf dem Chiprahmen alternierend miteinander verbunden sind. Zwischen der Empfängerfläche und dem Chiprahmen, die thermisch gut voneinander isoliert sind, bildet sich deshalb bei Bestrahlung ein Temperaturunterschied aus, der über den thermoelektrischen Effekt (Seebeck-Effekt) in eine elektrische Spannung gewandelt wird.

Die hohe Empfindlichkeit erreichen die IPHT-Sensoren durch den Einsatz einer besonderen Materialkombination. Die Verwendung der thermoelektrisch hocheffektiven Kombination von V/VI-Verbindungshalbleitern auf Basis von Bismut und Antimon ist ein weltweites Alleinstellungsmerkmal der im Reinraum des Jenaer Institutes gefertigten Thermosäulen-Sensoren. Weitere Vorteile von thermoelektrischen Strahlungssensoren sind ihre Linearität, sowie ihre Energieeffizienz. Da das elektrische Signal allein durch die Temperaturdifferenz erzeugt wird, muss der Sensor nicht auf die wertvolle Energie der Atombatterie von Curiosity zurückgreifen.

Unempfindliche Temperatursensoren für Hochöfen

Nicht nur im Forschungsbereich Photonische Detektion sondern auch auf dem Gebiet der Faseroptik erforscht das IPHT seit vielen Jahren Systeme zur Temperaturmessung unter extremen Bedingungen. Lichtleitfasern aus Saphir eignen sich für Anwendungen im anderen Extrem: der Messung von Temperaturen über 1200°C.

In industriellen Hochöfen wird aus Eisenerz flüssiges Roheisen geschmolzen. Für diesen komplizierten Prozess ist die Einhaltung von unterschiedlich heißen Temperaturzonen in den 30 bis 50 Meter hohen Schachtöfen essentiell. In vielen Fällen werden zur Temperaturerfassung dort noch Thermoelemente eingesetzt. Diese müssen aber aufgrund der extremen Beanspruchungen im Hochofen preisintensiv in kurzen Intervallen ausgewechselt werden. Eine andere Art von Thermosensoren sind Pyrometer. Ihre Messung basiert darauf, dass jeder Gegenstand über dem absoluten Nullpunkt Wärmestrahlung aussendet, deren Intensität von seiner Temperatur abhängt. Wenn das Messobjekt wärmer als das Pyrometer ist, ist der Strahlungsfluss positiv, d.h. das Messobjekt gibt Wärmestrahlung an das Pyrometer ab. Pyrometer können die Temperatur allerdings nur an Oberflächen messen, also an den Ofenwänden oder der Schmelze selbst, aber nicht im Rest des großen Ofenvolumens.

Das IPHT hat erfolgreich Tests in Öfen mit einem alternativen faserbasierten Verfahren absolviert, das diese Nachteile nicht hat. Das Sensorkonzept nutzt die von Temperaturschwankungen hervorgerufenen Veränderungen der optischen Eigenschaften einer Saphir-Lichtleitfaser. „Saphire kennen viele nur als fragile Edelsteine, aber tatsächlich ist das Material sehr robust“, sagt Dr. Tobias Habisreuther, aus der Forschergruppe Fasersensorik, der die Tests durchgeführt hat. Saphir ist säureunlöslich und schmilzt erst bei einer Temperatur von 2040 °C. Als einziger Gruppe weltweit gelingt es am IPHT die Faser Bragg Gitter genannten Strukturen in Saphirfasern hineinzuschreiben. Durch die Temperatur im Ofen ändert sich einerseits die Brechzahl der Faser und durch die Ausdehnung andererseits der Abstand der Gitterebenen. Durch beide Effekte wird das durch die Faser laufende Lichtbündel mit anderen Wellenlägen reflektiert, was in einem angeschlossenen Spektrometer gemessen wird. „Die Ergebnisse sind sehr vielversprechend und wir werden sie demnächst in Langzeitstudien auf ihre Stabilität überprüfen“, so Habisreuther abschließend.

Ansprechpartner:
Dr. Tobias Habisreuther
Arbeitsgruppe​ Optische Fasertechnologie
Telefon +49 (0) 3641 · 206-226
Telefax +49 (0) 3641 · 206-399
juergen.popp@ipht-jena.de

Dr. Andreas Wolff | IPHT Jena
Weitere Informationen:
http://www.ipht-jena.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Löschbare Tinte für den 3-D-Druck
24.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung