Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiß wie der Ofen, kalt wie der Mars

09.08.2013
Es ist heiß in Deutschland. Wir Menschen haben präzise Sensoren für Temperaturen, daher stimmt unser Körpergefühl sehr gut mit von elektrischen Sensoren vorhergesagten Werten überein. Aber wie genau funktionieren Temperaturmesser an extremen Orten wie beispielsweise in Hochöfen oder auf fremden Planeten?

Ein gewaltiger Sandsturm fegt durch die Wüste, aber es ist nicht heiß, im Gegenteil, es sind -35°C. Gäbe es Wasser, das zu Schnee gefrieren könnte, könnte man auf den riesigen Bergen Wintersport betreiben. Der NASA-Roboter Curiosity setzt unbeirrt seinen Weg fort, um auf dem Mars Spuren von Wasser und Leben zu finden.


Lichtleitfasern aus Saphir eignen sich für Anwendungen im Extrem: der Messung von Temperaturen über 1200°C. IPHT/Döring

Mit an Bord sind Temperatursensoren aus dem Institut für Photonische Technologien Jena e.V. (IPHT). Seit der Landung auf dem roten Planeten zeichnen sie zuverlässig die Bodentemperatur auf. Keine leichte Aufgabe bei Temperaturunterschieden von 150°C und ohne Stromzufuhr.

„Unsere Sensoren musste schon vor der Reise einiges einstecken, so beispielsweise Vibrationstests mit Beschleunigungen von bis zu 8 g. Trotz der außergewöhnlichen mechanischen und thermischen Belastungen müssen die Sensoren eine hohe Sensitivität aufweisen“, beschreibt Dr. Ernst Keßler, Projektleiter am IPHT, die Leistungsfähigkeit der Sensoren. Sie basieren auf dem thermoelektrischen Prinzip und besitzen 100 in Reihe geschaltete Thermopaare.

Diese bestehen aus zwei thermoelektrischen Materialien, die in der Empfängerfläche sowie auf dem Chiprahmen alternierend miteinander verbunden sind. Zwischen der Empfängerfläche und dem Chiprahmen, die thermisch gut voneinander isoliert sind, bildet sich deshalb bei Bestrahlung ein Temperaturunterschied aus, der über den thermoelektrischen Effekt (Seebeck-Effekt) in eine elektrische Spannung gewandelt wird.

Die hohe Empfindlichkeit erreichen die IPHT-Sensoren durch den Einsatz einer besonderen Materialkombination. Die Verwendung der thermoelektrisch hocheffektiven Kombination von V/VI-Verbindungshalbleitern auf Basis von Bismut und Antimon ist ein weltweites Alleinstellungsmerkmal der im Reinraum des Jenaer Institutes gefertigten Thermosäulen-Sensoren. Weitere Vorteile von thermoelektrischen Strahlungssensoren sind ihre Linearität, sowie ihre Energieeffizienz. Da das elektrische Signal allein durch die Temperaturdifferenz erzeugt wird, muss der Sensor nicht auf die wertvolle Energie der Atombatterie von Curiosity zurückgreifen.

Unempfindliche Temperatursensoren für Hochöfen

Nicht nur im Forschungsbereich Photonische Detektion sondern auch auf dem Gebiet der Faseroptik erforscht das IPHT seit vielen Jahren Systeme zur Temperaturmessung unter extremen Bedingungen. Lichtleitfasern aus Saphir eignen sich für Anwendungen im anderen Extrem: der Messung von Temperaturen über 1200°C.

In industriellen Hochöfen wird aus Eisenerz flüssiges Roheisen geschmolzen. Für diesen komplizierten Prozess ist die Einhaltung von unterschiedlich heißen Temperaturzonen in den 30 bis 50 Meter hohen Schachtöfen essentiell. In vielen Fällen werden zur Temperaturerfassung dort noch Thermoelemente eingesetzt. Diese müssen aber aufgrund der extremen Beanspruchungen im Hochofen preisintensiv in kurzen Intervallen ausgewechselt werden. Eine andere Art von Thermosensoren sind Pyrometer. Ihre Messung basiert darauf, dass jeder Gegenstand über dem absoluten Nullpunkt Wärmestrahlung aussendet, deren Intensität von seiner Temperatur abhängt. Wenn das Messobjekt wärmer als das Pyrometer ist, ist der Strahlungsfluss positiv, d.h. das Messobjekt gibt Wärmestrahlung an das Pyrometer ab. Pyrometer können die Temperatur allerdings nur an Oberflächen messen, also an den Ofenwänden oder der Schmelze selbst, aber nicht im Rest des großen Ofenvolumens.

Das IPHT hat erfolgreich Tests in Öfen mit einem alternativen faserbasierten Verfahren absolviert, das diese Nachteile nicht hat. Das Sensorkonzept nutzt die von Temperaturschwankungen hervorgerufenen Veränderungen der optischen Eigenschaften einer Saphir-Lichtleitfaser. „Saphire kennen viele nur als fragile Edelsteine, aber tatsächlich ist das Material sehr robust“, sagt Dr. Tobias Habisreuther, aus der Forschergruppe Fasersensorik, der die Tests durchgeführt hat. Saphir ist säureunlöslich und schmilzt erst bei einer Temperatur von 2040 °C. Als einziger Gruppe weltweit gelingt es am IPHT die Faser Bragg Gitter genannten Strukturen in Saphirfasern hineinzuschreiben. Durch die Temperatur im Ofen ändert sich einerseits die Brechzahl der Faser und durch die Ausdehnung andererseits der Abstand der Gitterebenen. Durch beide Effekte wird das durch die Faser laufende Lichtbündel mit anderen Wellenlägen reflektiert, was in einem angeschlossenen Spektrometer gemessen wird. „Die Ergebnisse sind sehr vielversprechend und wir werden sie demnächst in Langzeitstudien auf ihre Stabilität überprüfen“, so Habisreuther abschließend.

Ansprechpartner:
Dr. Tobias Habisreuther
Arbeitsgruppe​ Optische Fasertechnologie
Telefon +49 (0) 3641 · 206-226
Telefax +49 (0) 3641 · 206-399
juergen.popp@ipht-jena.de

Dr. Andreas Wolff | IPHT Jena
Weitere Informationen:
http://www.ipht-jena.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Startschuss für EU-Projekt: Charakterisierung der Schweißraupe für adaptives Laserauftragschweißen
15.11.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Innovatives Verfahren zur Aufbereitung von Raps
08.11.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie