Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Günstige Wafer für Solarzellen

01.10.2015

Siliziumwafer sind das Herzstück von Solarzellen. Sie herzustellen, ist jedoch nicht billig. Über 50 Prozent des reinen Siliziums werden zu Staub zerspant. Eine neue Herstellungsmethode von Fraunhofer-Forschern räumt auf mit diesen Materialverlusten: Die Hälfte des Rohstoffs und 80 Prozent Energie lassen sich so einsparen.

Sie glitzern dunkelblau auf den Dächern. Im Haus sorgen sie für Helligkeit, versorgen Lampen, Kühlschränke und andere Geräte mit Strom. Die Rede ist von Solarzellen. Ein wichtiger Bestandteil sind dünne Silizium-Scheiben: Wafer.


Nach dem neuen Verfahren abgelöster Wafer (rechts), wiederverwendbares Substrat (links).

© Fraunhofer ISE

Sie herzustellen, ist arbeits- und energieaufwändig und somit entsprechend kostenintensiv. Rund die Hälfte des Siliziums geht bei der Produktion der Wafer verloren. Der derzeitige Preis für Polysilizium liegt bei etwa 15 Euro pro Kilogramm. Bei jedem Kilo Polysilizium fließt also Material für etwa acht Euro in verunreinigtes und damit unbrauchbares Silizium.

Weniger Verlust und 80 Prozent weniger Energie

Nicht so dagegen bei einem neuen Verfahren, das Forscherinnen und Forscher am Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg entwickelt haben. »Mit unserer Methode vermeiden wir fast alle Verluste, die bei der herkömmlichen Produktion anfallen«, sagt Dr. Stefan Janz, Wissenschaftler am ISE. »Sprich: Wir senken den Materialverlust um 50 Prozent und verbrauchen 80 Prozent weniger Energie.«

Um zu verstehen, wie den Forschern dies gelungen ist, lohnt ein Blick auf die herkömmliche Herstellungsweise von Wafern: Ausgangspunkt ist ein unreiner Brocken Silizium. Dieser wird unter Zugabe von Chlor verflüssigt und aufgereinigt – Chlorsilan nennt sich der erzeugte Werkstoff. Versetzt man das entstandene Gas mit Wasserstoff, setzt sich das Material wieder zu hochreinem Polysilizium um – allerdings nicht in der kristallinen Form, die man für Solarzellen braucht.

Daher werden die entstandenen Brocken wieder zerschlagen, bei 1450 Grad Celsius geschmolzen, durch unterschiedliche Methoden zum Wachsen gebracht und in 200 bis über tausend Kilogramm schwere Siliziumblöcke überführt. Aus diesen fertigt man Säulen, die letztendlich in kleine Scheiben zersägt werden, die Wafer.

Auch beim neuen Verfahren stellen die Forscher zunächst Chlorsilan her, erhitzen es auf über tausend Grad Celsius und versetzen es mit Wasserstoff. »Wir lassen das Silizium jedoch nicht einfach zufällig wachsen, sondern bringen es gleich in die gewünschte kristalline Form«, erläutert Janz. Und zwar über die Chemische Gasphasenabscheidung: Das gasförmige Silizium strömt an einem Substrat – einem Siliziumwafer – vorbei und beschichtet dabei dessen Oberfläche. Atomlage für Atomlage wächst somit der Wafer heran.

Damit die Forscher ihn wieder gut vom Substrat ablösen können, bringen sie in dieses zuvor eine mechanische Sollbruchstelle ein, genauer gesagt poröses Silizium. Die Substrate können mehrere Dutzend Male wiederverwendet werden. Doch sie dienen nicht nur als »Unterlage«: Sie spenden auch die Kristallinformation. Denn für die Solarzellen benötigt man einen Siliziumkristall, in dem die Atome ähnlich wie in einem Diamanten »in Reih und Glied« angeordnet sind. Wie die Atome aus dem gasförmigen Silizium sich anordnen sollen, verrät ihnen quasi das Substrat.

»Wir erhalten auf diese Weise einen sehr guten Einkristall – also die beste Kristallart. Die Wafer sind qualitativ gleichwertig mit den konventionell hergestellten«, erklärt Janz.

Kostengünstigere Solarzellen

Kurzum: Der Wafer wächst genau so, wie die Forscher ihn haben wollen. Der aufwändige Sägeprozess entfällt – und damit auch der Arbeitsschritt, in dem fast die Hälfte des hochreinen Materials verloren geht. Weitere Vorteile: Mit der neuen Methode lassen sich die Wafer beliebig dünn herstellen. Beim herkömmlichen Prozess müssen die Siliziumscheiben mindestens 150 bis 200 Mikrometer dick sein, ansonsten wäre der Schnittverlust zu hoch. Für Solarzellen reichen jedoch weit dünnere Wafer.

Dabei gilt: Je dünner die Wafer, desto kostengünstiger die Solarzelle. Das neuartige Verfahren spart daher doppelt Material – einmal bei der Herstellung des Wafers, einmal bei seiner Dicke. Das macht sich durchaus bemerkbar: Kostet der Wafer nur noch die Hälfte, sinken die Kosten für das gesamte Solarmodul um 20 Prozent.

Seit Juni 2015 hat die Ausgründung NexWafe die Vermarktung der neuen Wafer-Herstellung übernommen. »Bei der Pilotierung der Technologie arbeiten wir eng mit den Kollegen des ISE zusammen«, sagt Dr. Stefan Reber, der die Ausgründung leitet. Ende 2017, so das Ziel, soll die Fabrik stehen und die kostengünstigen Wafer in Massenproduktion fertigen.

Weitere Informationen: http://www.nexwafe.com/

Karin Schneider | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2015/Oktober/guenstige-wafer-fuer-solarzellen.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie