Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geregeltes Laserschweißen

02.03.2009
25 000 Prozessoren arbeiten im Gleichtakt: In den Pixeln einer Kamera untergebracht, werten sie die von der Kamera aufgenommenen Bilder sofort aus – mehr als zehnmal so schnell wie ein Computer. Die Laserleistung kann so erstmals während des Schweißens geregelt werden.

Autotüren sind meist Stückwerk: Die Mitarbeiter bauen sie aus mehreren Blechabschnitten zusammen, die sie üblicherweise mit einem Laser aneinanderschweißen.

Der Laserstrahl fährt dabei über die Bleche, die sich ein Stück überlappen und schmilzt sie jeweils in einem Bereich von einigen zehntel Millimetern: Es entsteht ein Durchschweißloch, das sich wieder verschließt, wenn der Laserstrahl weiterwandert. Wichtigste Einstellung dabei ist die Laserleistung – ist sie zu gering, verbinden sich die Bleche nicht fest miteinander, ist sie zu hoch, schneidet der Laser die einzelnen Bleche durch.

Bislang tasten sich die Mitarbeiter über Ausprobieren an die richtige Laserleistung heran und halten sie dann konstant. Dazu kommen Erfahrungswerte: So verschmutzt nach einiger Zeit das Schutzglas, es kommt weniger Laserlicht auf dem Metall an. Verdreckt das Glas früher als üblich, können Stunden vergehen, bis dies entdeckt wird – die Bleche werden unter Umständen währenddessen nicht ordentlich verschweißt. Zwar gibt es eine Kamera, die den Prozess überwacht, der Computer kann jedoch nur rund tausend Bilder in der Sekunde auswerten. Um das schnell wandernde Durchschweißloch zu verfolgen und die Leistung entsprechend zu regeln, sind abhängig vom Schweißprozess Bildraten von über 10 Kilohertz nötig – das entspricht 10 000 Bildern pro Sekunde.

Forscher am Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg haben nun erstmals eine Regelung für Laserschweißprozesse entwickelt, die die Leistung an die Situation anpasst: »Unser System wertet 14 000 Bilder pro Sekunde aus und nutzt die gewonnenen Daten, um die Leistung zu steuern«, sagt Andreas Blug, Projektleiter am IPM. Doch wie schafft es das System, die Bilder mehr als zehnmal so schnell auszuwerten wie herkömmliche Software? »Wir verwenden spezielle Kameras, bei denen in jedes Pixel ein winziger Prozessor integriert wurde. Alle diese Prozessoren – insgesamt 25 000 – arbeiten gleichzeitig. In konventionellen Bildverarbeitungssystemen werden die Daten von wenigen Computerprozessoren der Reihe nach verarbeitet«, sagt Blug. Experten sprechen von »Cellular Neural Networks«, CNN. Wenige Mikrosekunden nach der Aufnahme liefert die Kamera ein bereits ausgewertetes Bild von der Kontur des Durchschweißloches. Für kleine Durchschweißlöcher erhöht das System die Leistung, für große reduziert es sie. »Mit diesem Regelungssystem konnten wir die erste industrienahe Anwendung der CNN-Technologie realisieren«, sagt Blug. Einen Prototypen gibt es bereits. Nun wollen die Forscher das System in der Produktion testen.

Andreas Blug | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.ipm.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neues Laserstrahl-Schweißverfahren des Fraunhofer IWS erlangt die Zertifizierung der DNV GL
16.05.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie