Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geometrie beschleunigt klinische Studien: RUB-Mathematiker entwickeln neues Verfahren

21.10.2010
Den optimalen Versuchsplan für Medikamententests einfach „ablesen“

Ein neues geometrisches Verfahren für die optimale Versuchsplanung in Medikamentenstudien haben Bochumer Mathematiker entwickelt.


Optimale Versuchsanordnung für zwei Messungen an einem Patienten. Aus der Färbung (pixel) des Schnittpunktes mit dem Rand der Figur kann man mit Hilfe der Legende (oder mit entsprechender Software) den Zeitpunkt der Messung ablesen. Linkes Bild (pink): erste Messung zum Zeitpunkt 0.0; rechtes Bild (rot): zweite Messung zum Zeitpunkt 2.0.

Sie überführen das zugrundeliegende und sehr komplexe mathematische Optimierungsproblem in eine geometrische Darstellung, aus der Statistiker dann die beste Versuchsanordnung unmittelbar ablesen können.

Forscher der RUB um Prof. Dr. Holger Dette (Stochastik) zeigen damit, dass geometrische Überlegungen helfen können, Belastungen für Patienten und Versuchstiere in der Entwicklung neuer Medikamente und Wirkstoffe zu reduzieren und klinische Studien zu beschleunigen.

Über ihre Ergebnisse berichten die Wissenschaftler im renommierten „Journal of the Royal Statistical Society“.

Dosisfindung und Dauer der Wirkung

Die meisten Menschen kennen Geometrie nur aus der Schule und halten sie für ein sehr abstraktes Teilgebiet der Mathematik mit wenig Praxisbezug. Doch gerade für die Optimierung einer klinischen Versuchsanordnung, die mit analytischen Methoden nicht lösbar ist, liefert die Geometrie einen neuen Ansatzpunkt. Hintergrund ist der langwierige Prozess, neue Arzneimittel zu entwickeln und zu testen.

In unserem hochentwickelten Gesundheitswesen müssen neue Präparate in aufwendigen Studien zunächst an Versuchstieren („präklinische“ Studien), dann an gesunden und schließlich an erkrankten Probanden (eigentliche „klinische“ Studien) erprobt werden. Bei diesen Untersuchungen kommt es darauf an, den bei einer bestimmten Dosis erzielten Effekt zu schätzen (die „Dosisfindung“) und weiterhin die Zeit bis zur Wirkung und die Dauer der Wirkung zu bestimmen (die „Pharmakokinetik“ des Präparates). Aufgrund der Risiken jedes neuen Medikamentes versucht man, diese Ziele mit so wenig Patienten und Versuchstieren wie möglich zu erreichen.

Graphische Darstellung des Problems

Der Lehrstuhl für Stochastik (Prof. Dr. Holger Dette) befasst sich schon seit einiger Zeit in einer Kooperation mit den Pharmaunternehmen Novartis und Bayer Schering mit der mathematisch optimalen Planung solcher Studien. „Speziell bei den komplexeren Situationen in der Pharmakokinetik ist die rein rechnerische Lösung solcher Probleme jedoch häufig prinzipiell nicht möglich“, sagt Prof. Holger Dette. Jetzt gelang es ihm zusammen mit Dr. Tim Holland-Letz (Abteilung für medizinische Informatik, Biometrie und Epidemiologie) mit Hilfe von Methoden aus der mathematischen Geometrie trotzdem ein allgemeines Lösungsverfahren zu entwickeln. Die Idee dabei ist, das zugrundeliegende Problem in eine graphische Abbildung zu übertragen, aus der sich eine Lösung ableiten lässt.

Patientenmessungen und Information

Nimmt man als Patient eine Tablette ein, so steht der Wirkstoff dem Körper nicht sofort zur Verfügung, sondern muss erst über den Verdauungstrakt aufgenommen werden. Ebenso bleibt er nicht dauerhaft im Körper verfügbar, sondern wird mit der Zeit wieder abgebaut. Wie schnell diese Vorgänge ablaufen, ist für neue Medikamente nicht bekannt und muss erst durch klinische Studien bestimmt werden. Mathematiker beschreiben diesen Zusammenhang zwischen Zeit und Konzentration des Medikamentes durch bestimmte Funktionen, die von unbekannten zufälligen Parametern abhängen – etwa von der Aufnahme- und der Abbaukonstante des Präparates, die für jeden Patienten variieren. Messungen an Patienten liefern Informationen über diese unbekannten Parameter. Je nach Zeitpunkt der Messung ergibt sich jedoch unterschiedlich viel Information.

Geometrie als Lösungsansatz

In der statistischen optimalen Versuchsplanung versuchen Forscher daher, die verfügbaren Messungen und Patienten so festzulegen, dass sie die maximal mögliche Menge an Information gewinnen. Das neue geometrische Verfahren aus Bochum ist eine entscheidende Hilfe dabei. Jeder Punkt in der generierten Graphik steht für die Messung an einem bestimmten Zeitpunkt. Die Position dieser Punkte auf der x- und der y-Achse zeigt, wie viel Information über den ersten bzw. zweiten Parameter eine Messung zu diesem Zeitpunkt liefert. Die Punkte haben zudem unterschiedliche Farben, die angeben, welcher Zeitpunkt dieser Messung zugrundeliegt. „Je nach Bedeutung der Parameter kann so ein optimaler Versuchsplan erstellt werden“, so Prof. Dette.

Titelaufnahme

Holland-Letz, T., Dette, H., Pepelyshev, A.: “A geometric characterization of c-optimal designs for regression models with correlated errors”. Journal of the Royal Statistical Society, Series B. DOI: 10.1111/j.1467-9868.2010.00757.x
Beitrag als PDF:
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2010.00757.x/pdf
Weitere Informationen
Prof. Dr. Holger Dette, Lehrstuhl für Stochastik, Fakultät für Mathematik der RUB; Tel. 0234/32-28284, -23284, E-Mail: holger.dette@rub.de

Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2010.00757.x/pdf

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops