Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiberger Ingenieure geben Schwimmern Starthilfe

19.08.2008
Bei den olympischen Schwimmwettkämpfen im Peking spielten sich die entscheidenden Szenen häufig unter Wasser ab.

Nach dem Start oder der Wende schlängelten sich Sportler anderer Nationen wie Delphine durch das Wasser und schwammen so schon auf den ersten Bahnmetern der deutschen Konkurrenz davon. Doch warum ist gerade diese Fortbewegung im Wasser so effektiv? Und wie lässt sie sich noch verbessern?

Diesen Fragen gehen Ingenieure der TU Bergakademie Freiberg mit Sportwissenschaftlern aus Jena nach.

"Delphin-Kick" nennt man diese Bewegung, bei der der gestreckte Körper des Schwimmers eine Art Wellenbewegung beschreibt. Mittlerweile nutzen die Sportler in allen Schwimmarten diese Technik, um bereits in der Tauchphase ihrer Konkurrenz zu enteilen. Um zu verstehen, wie dieser Vortrieb im Wasser funktioniert, ist die Sportwissenschaft auf das Wissen von Strömungsmechanikern angewiesen. "In den USA und Australien werden seit Jahren bereits strömungsmechanische Untersuchungen im Schwimmsport eingesetzt", erklärt Prof. Christoph Brücker, Forscher am Freiberger Institut für Mechanik und Fluiddynamik. "In Deutschland besteht hier noch ein großer Nachholbedarf in Forschung und Förderung."

An seinem Institut an der TU Bergakademie Freiberg wird seit September 2007 im Rahmen eines DFG-Schwerpunktprogramms "Strömungsbeeinflussung in der Natur und Technik" der Delphin-Kick erforscht. Die Daten, die das Institut dabei auswertet, erhalten sie vom Olympiazentrum Heidelberg und dem Institut für Sportwissenschaften der Universität Jena unter der Leitung von Professor Blickhan. In Freiberg entstehen daraus Computermodelle, die die Bewegung des Wassers um den Schwimmer sichtbar machen. "Solche Strömungsberechnungen kennt man bereits von der Aerodynamik von Autos oder Tragflächen von Flugzeugen. Doch dort sind die Gegenstände, die man untersucht, in den meisten Fällen starr. Wir haben hier die Aufgaben, Strömungen an sich stark verformenden Geometrien zu berechnen", beschreibt Prof. Brücker die Herausforderung.

In den ersten Rechnermodellen schlängelt sich noch ein stark vereinfachter Schwimmer über den Monitor. Und doch ermöglicht die zunächst zweidimensionale Darstellung wichtige Erkenntnisse über die Geschehnisse im Wasser. Rote, rotierende Kreise in der Computeranimation zeigen die Verwirbelungen im Wasser an, die entlang des Schwimmers entstehen. So bilden sich beispielsweise an den Armen und am Kopf kleine Wirbel, die immer stärker werden, bevor sie plötzlich abreißen. Ebenso an den Knien und Füßen. Lange bleiben sie noch im Wasser aktiv. Der Schwimmer scheint sich an ihnen bei seiner Fortbewegung regelrecht abzustoßen. "Diese Wirbel können, wie bei einer Tragfläche eines Flugzeugs, einen Auftrieb erzeugen", erklärt Prof. Brücker. "Wir wissen aber auch von Untersuchungen bei Fischen, dass sie diese Wirbel nutzen und sich von ihnen im Wasser quasi abdrücken."

Mithilfe der Berechnungen lassen sich erste Anhaltspunkte ermitteln, wie die Schwimmer diese Wirbel optimal für ihren Vortrieb nutzen können. Der nächste Schritt der Freiberger Wissenschaftler wird die Entwicklung eines dreidimensionalen Computermodells sein. Dann können die deutschen Schwimmer bei der Olympiade 2012 vielleicht mit diesen Forschungsergebnissen der Konkurrenz wie ein Fisch davonschwimmen.

Christian Möls | idw
Weitere Informationen:
http://www.tu-freiberg.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie