Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiche europäische Zusammenarbeit für das industrielle Fügen von Leichtbau-Strukturen

09.01.2014
Das Laser Zentrum Hannover e.V. (LZH) und sieben Partner beenden erfolgreich das Forschungsprojekt „LaWocs“. Von Dezember 2010 bis November 2013 haben die beteiligten nationalen und internationalen Projektpartner intensiv am „Laser transmission welding of thermoplastic composite structures“ gearbeitet.

Leichtbau mit Potential für Flugzeug, Fahrzeug und Schiff


Lasergeschweißte Interieur Aircraft-Pins


Prozessskizze des Fügevorgangs

Die Ziele im Bereich des Umweltschutzes sind ambitioniert – und sie müssen es sein. Hierzu gehören unter anderem eine Energieeinsparung durch Senkung des Treibstoffverbrauchs und damit verbunden eine Reduzierung von CO2-Emissionen. Dies ist eine Herausforderung für alle produzierenden Industrien vom Flugzeug- über den Fahrzeugbau bis zum Schiffbau.

Zur Umsetzung werden neue Leichtbaukonzepte basierend auf der Verwendung von kohlenstofffaserverstärkten (CFK) und glasfaserverstärkten Kunststoffen (GFK) entwickelt. Diese Werkstoffe bieten ein hohes Gewichtseinsparungspotential bei gleichzeitig ausgezeichneten mechanischen Eigenschaften. Somit gewinnen CFK und GFK für die Industrie immer mehr an Bedeutung. Ein genaues Verständnis dieser Werkstoffe kombiniert mit angepassten Verarbeitungskonzepten sind daher ein wichtiges Forschungsthema weltweit.

LaWocs: Laserdurchstrahlschweißen von thermoplastischen Composite Strukturen
Das Eurostars Projekt LaWocs „Laser transmission welding of thermoplastic composite structures“ hat in den letzten drei Jahren, als erstes Forschungsprojekt überhaupt, das laserbasierte Fügen von Faserverbundwerkstoffen untersucht. Ziel des Projektes war die Abbildung einer Prozesskette beginnend bei einer schweißgerechten Konstruktion von Bauteilen über eine Anpassung der Werkstoffe bis hin zum Laserschweißprozess selbst.

Bisher werden beispielsweise Klebprozesse zum Verbinden von faserverstärkten Werkstoffen eingesetzt, welche allerdings eine aufwendige Vorbereitung der Oberfläche sowie die Einhaltung von Trockenphase erfordern. Eine Alternative zum Kleben ist das mechanische Fügen mittels Nieten oder Schrauben.

Zu diesem Zweck müssen die Bauteile mit Löchern versehen werden, die den Kraftfluss entlang der Verstärkungsfasern unterbrechen. Das Laserdurchstrahlschweißen (engl. Laser Transmission Welding) bietet viele Vorteile für das Fügen thermoplastischer, faserverstärkter Materialien. Zu ihnen gehört eine hohe Flexibilität, die es ermöglicht, komplizierte Geometrien zu realisieren. Darüber hinaus ist die Bearbeitung mittels des Lasers kontaktfrei, d.h. es wirken keine zusätzlichen Kräfte auf das Bauteil, und die Laserenergie wird gezielt dort eingebracht, wo sie zur Ausbildung einer Schweißnaht benötigt wird.

Über eine berührungslose Temperaturmessung mit Pyrometern kann zudem eine Prozessregelung umgesetzt werden, um beispielsweise thermoplastisches GFK mit CFK zuverlässig zu verschweißen. Somit lassen sich durch den Einsatz von Lasern zum Fügen von Verbundwerkstoffen Produktionsprozesse deutlich vereinfachen. Gleichzeitig bietet dieses Verfahren ein hohes Automatisierungspotential. Zudem ermöglicht das Laserdurchstrahlschweißen eine Produktion mit kurzen Taktzeiten und großen Stückzahlen, welche entscheidende Voraussetzungen für den Einsatz in der industriellen Fertigung sind.

Europäische Kompetenz auf der ganzen Linie

Die europäische Zusammenarbeit erlaubte, alle Aspekte der einzelnen Fertigungsschritte von Faserverbundbauteilen in einem Forschungsverbund darzustellen. Im Rahmen des dreijährigen Verbundprojektes wurden neue Materialen designt, die den Anforderungen des Laserdurchstrahlschweißens genügen, ohne die mechanischen Eigenschaften zu beeinflussen. Zusätzlich wurden Untersuchungen zum Verständnis des Schweißprozesses an verschiedenen thermoplastischen Materialien durchgeführt und für die Entwicklung von Fügeparametern genutzt. Somit konnten die Projektpartner ELEMENT, KVE, EPL, TODS, DEVA, TENCATE, FIBRE und LZH alle Teilprozesse der Material- und Prozessentwicklung, der Bauteilherstellung sowie der Bauteilprüfung erstmalig im Zusammenspiel umsetzen und optimieren.

Der Fügeprozess

Eine zentrale Aufgabe des Projektes, die Entwicklung eines laserbasierten Verfahrens zum Fügen von endlosfaserverstärkter Composite-Strukturen, lag in der Verantwortung der Wissenschaftler der Gruppe Verbundwerkstoffe des LZHs. Für die Umsetzung dieser Schweißprozesse wurden die optischen Eigenschaften von thermoplastischen Werkstoffen genutzt, die im nahinfraroten Spektralbereich (NIR) teiltransparent sind und von entsprechender Laserstrahlung durchdrungen werden können. Die Laserstrahlung wird dann an Kohlenstofffasern bzw. an Rußpartikeln in einem zweiten Fügepartner absorbiert und die elektromagnetische Strahlung wird in Wärme umgewandelt.

Durch Wärmeleitung zwischen den beiden Fügepartnern werden die beteiligten Kunststoffe aufgeschmolzen und es bildet sich eine Schweißnaht aus. Die Gruppe Verbundwerkstoffe entwickelte unter anderem Prozesse zum Fügen von niedrig transparenten Faserverbundwerkstoffen.

Zu diesen gehören u.a. glasfaserverstärkte Organobleche basierend auf einer Polyetherimid (PEI)-Matrix, welche bis zu einer Materialstärke von 2,4 mm verschweißt wurden. Darüber hinaus wurden Verfahren entwickelt, um thermoplastische Winkel und Halter mit Bauteilen aus umgeformten Organoblechen zu verschweißen.

Lasergeschweißte Aircraft-Pins – ein Modell für die Zukunft

Sogenannte Aircraft-Pins, die zu hunderttausenden jährlich produziert und in modernen Großraumflugzeugen verbaut werden, sind nur ein Beispiel für Realbauteile, die im Fokus des Projektes LaWocs standen. Diese werden zum Beispiel in Fußbodenpanelen zum Fixieren von Brandschutzkomponenten und Dämmmaterialien verbaut. Tests konnten bereits zeigen, dass die lasergeschweißte Version eine höhere Festigkeit als geklebte Pins aufweist, welches eine Gewichtsreduzierung des Pins ermöglicht.

Das Laserdurchstrahlschweißen stellt somit eine hervorragende Lösung für das schnelle Fügen von thermoplastischen, faserverstärkten Werkstoffen dar. Die Arbeiten im Rahmen des Projektes bieten eine exzellente Grundlage um einen automatisierten Prozesses für die industrielle Produktion dieser Leichtbauteile zu entwickeln und so eine ressourcenbewusste, umweltschonende Entwicklung im Transportwesen zu ermöglichen.

Projektpartner:
- DEVA DEVA Kunststoff-Technik GmbH (Deutschland)
- ELEMENT Element Materials Technology (Großbritannien)
- EPL EPL Composite Solutions Ltd (Großbritannien)
- Fibre Faserinstitut Bremen e.V. (Deutschland)
- KVE Kok & Van Engelen Composite Structures BV (Niederlande)
- LZH Laser Zentrum Hannover e. V. (Deutschland)
- TENCATE TenCate Advanced Composites BV (Niederlande)
-TODS Tods Aerospace Limited (Großbritannien)
Das LZH bedankt sich beim Bundesministerium für Bildung und Forschung (BMBF) für die Förderung des Eurostars Projektes LaWocs (FKZ: 01QE1002D).
Kontakt:
Laser Zentrum Hannover e.V. (LZH)
Lena Bennefeld
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-238
Fax: +49 511 2788-100
E-Mail: l.bennefeld@lzh.de
Das Laser Zentrum Hannover e.V. (LZH) ist eine durch Mittel des Niedersächsischen Ministeriums für Wirtschaft, Arbeit und Verkehr unterstützte Forschungs- und Entwicklungseinrichtung auf dem Gebiet der Lasertechnik.

Michael Botts | Laser Zentrum Hannover e.V.
Weitere Informationen:
http://www.lzh.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE