Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektroautos auf den Punkt gebracht

11.11.2015

Neues Verfahren zur zentimetergenauen Positionierung bei induktiven Ladesystemen

Elektrofahrzeuge werden zunehmend nicht mehr per Kabel, sondern mittels induktiver Ladesysteme mit Strom versorgt. Die Ladung erfolgt über ein Magnetfeld, das von einer Ladespule im Parkplatzboden erzeugt und nach dem Transformatorprinzip auf eine Empfängerspule am Unterboden des Autos übertragen wird.


Elektrofahrzeug über der Ladespule.

Universität Stuttgart/IVK


3D-Anzeige der Position der Ladespule (Empfängerspule rot, Ladespule blau).

Universität Stuttgart/IVK

Damit das funktioniert, muss der Fahrer das Auto so parken, dass beide Spulen exakt übereinander liegen. Ohne ein adäquates Assistenzsystem ist dies so gut wie unmöglich – doch gerade daran fehlte es bisher. Am Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) der Universität Stuttgart wurde nun ein Verfahren entwickelt, das eine zentimetergenaue Positionierung erreicht.

Induktive Ladesysteme haben den Vorteil, dass im Auto kein Kabel mitgeführt werden muss, und sind zudem sicherer gegen Vandalismus. Die Suche nach einem Positionierungsverfahren, das eine präzise Lokalisierung der Ladespule ermöglicht und somit den Fahrer beim Ausrichten des Fahrzeugs unterstützt, brachte jedoch trotz mehrjähriger Forschung und verschiedener technologischer Ansätze bisher keine befriedigenden Lösungen. Entweder waren die Verfahren ungenau, unausgereift und teuer, oder sehr anfällig gegenüber Wettereinflüssen.

Dean Martinovic hat nun im Rahmen seiner Doktorarbeit am IVK unter Leitung von Prof. Hans-Christian Reuss ein neues magnetfeldbasiertes Verfahren entwickelt und patentiert, mit dem ein Fahrzeug so punktgenau platziert werden kann, dass die Position der beiden Spulen um weniger als einen Zentimeter differiert.

In dem Projekt „BIPoLplus“, das im Rahmen des Spitzenclusters „Elektromobilität Süd-West“ vom Bundesministerium für Bildung und Forschung (BMBF) gefördert sowie vom Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS) unterstützt wird, nutzt er anstelle des bisher üblichen sinusförmigen Magnetfeldes erstmals ein gepulstes magnetisches Feld niedriger Frequenz.

Auf diese Weise lassen sich störende Wechselwirkungen mit dem metallischen Unterboden des Elektrofahrzeugs vermeiden. Spezielle hochempfindliche Magnetfeldsensoren, die direkt am metallischen Unterboden des Elektrofahrzeugs angebracht sind, tasten das magnetische Pulssignal ab und senden die Informationen an ein Steuergerät im Fahrzeug.

Ein speziell entwickelter Algorithmus berechnet anschließend selbständig – ohne jegliche Kommunikation mit der signalgebenden Elektronik im Parkplatz – die Position der Ladespule. Diese wird dem Fahrer schließlich mithilfe einer 3D-Applikation auf einem Tablet im Cockpit angezeigt, das den Fahrer bei der präzisen Ausrichtung des Fahrzeugs unterstützt.

Der Fahrer kann hierbei seine Bewegung in Echtzeit verfolgen. Der aktuelle Prototyp nutzt zwei Magnetfeldsensoren, welche die Position zuverlässig anzeigen, sobald sich die beiden Spulen auf einen Abstand von 1,5 Metern genähert haben.

Gegenüber anderen physikalischen Größen besitzt das Magnetfeld erhebliche Vorteile: Es unterliegt beispielsweise keiner Dämpfung bei der Durchdringung von Materialien und wird im Gegensatz zu Elektromagnetischen Wellen (WLAN, RFID etc.) nicht reflektiert. Da keine Sichtverbindung zwischen Sensor und Signalquelle benötigt wird, ist es anders als optische Systeme unabhängig von Wettereinflüssen wie Schnee oder Nebel.

Daher ist der Ansatz sowohl für den Einsatz in der heimischen Garage, als auch im Außenbereich geeignet. Das Verfahren funktioniert für jedes Fahrzeug und ist zudem kostengünstig, da im Gegensatz zu anderen Lösungen lediglich zwei sehr kleine, platzsparende und günstige Magnetfeldsensoren genutzt werden. Ob die Autos vorwärts oder rückwärts eingeparkt werden und ob sie beim „Betanken“ neben- oder hintereinander stehen, spielt keine Rolle: Alle Parkmodelle werden durch das Verfahren unterstützt.

Künftig soll das System noch besser werden: Weitere Arbeiten am IVK zielen auf eine Vergrößerung des Positionierungsbereichs und auf die Optimierung der Signalverarbeitung.

Weitere Informationen:
Dean Martinovic, Universität Stuttgart, Institut für Verbrennungsmotoren und Kraftfahrwesen,
Lehrstuhl für Kraftfahrzeugmechatronik Tel. 0711/685-68523,
E-Mail: dean.martinovic (at) ivk.uni-stuttgart.de

Dr. Michael Grimm, Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS), Abteilung Kraftfahrzeugmechatronik/ Elektronik, Tel. 0711/685-68123,
E-Mail: michael.grimm (at) fkfs.de

Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie