Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus Mikroskopie wird Nanoskopie

11.04.2002


Max-Planck-Forscher führen die Lichtmikroskopie in neue Dimensionen

Wegen der Wellennatur des Lichts und der damit verbundenen Beugungsgrenze kann man Strukturen, die feiner sind als einen halben Mikrometer, mit optischen Mikroskopen nicht mehr erkennen. So steht es zumindest in jedem Lehrbuch der Optik und auch in einführenden Lehrbüchern der Zellbiologie. Marcus Dyba und Stefan Hell vom Göttinger Max-Planck-Institut für biophysikalische Chemie berichten jetzt, dass sie diese Beugungsgrenze in einem ausgeklügelten optischen Aufbau bis in die zuvor kaum vorstellbare Größenordnung von wenigen Dutzend Nanometern überwinden konnten (Physical Review Letters, 22. April 2002). Sie kombinierten dazu zwei von Hell bereits früher erfundene Mikroskopieformen - die so genannte Fluoreszenzlöschung durch stimulierte Emission (STED) und die 4Pi-konfokale Mikroskopie - zu einem "STED-4Pi-Mikroskop". Diese neue Form der Lichtmikroskopie stößt erstmals das Tor in die Nanometerskala auf und hat das Potential völlig neue Einblicke in das Innere von Zellen zu eröffnen. Doch die STED-4Pi-Mikroskopie ist nicht nur für die biomedizinischen Forschung vielversprechend, sondern könnte auch für die Mikrolithographie und optische Datenspeicherung von Bedeutung sein.

Im Laufe des Physikunterrichts lernt jeder, dass man mit einem Lichtmikroskop Details kleiner als die Wellenlänge des Lichts nicht sehen kann. Demnach werden gleichartige Objekte, deren Abstand weniger als ein Viertel Mikrometer beträgt, im Bild verwischt - egal, wie perfekt das Mikroskop ist. Den Grund dafür hat der Physiker Ernst Abbe am Ende des 19. Jahrhunderts herausgefunden: Licht breitet sich als Welle aus und die Beugung erlaubt nicht, es auf einen kleineren Fleck als ein Drittel seiner Wellenlänge zu fokussieren. Die prinzipielle Natur dieses Problems führte zur Entwicklung des Elektronenmikroskops und in jüngerer Zeit des Rastertunnel- und Rasterkraftmikroskops. Diese Mikroskope sind äußerst leistungsstark und verfügen mittlerweile über eine molekulare Auflösung. Doch sie haben einen entscheidenden Nachteil - sie machen kleinste Details zumeist nur auf der Oberfläche von Proben sichtbar. Lichtmikroskope sind daher in der biomedizinischen Forschung unverzichtbar, denn nur sie liefern dreidimensionale Bilder aus lebenden Zellen und können sogar helfen, biochemische Vorgänge im Innern der Zelle zu entschlüsseln.

Daher hat sich die Arbeitsgruppe ‚Hochauflösende Optische Mikroskopie’ um Stefan Hell am Max-Planck-Institut für biophysikalische Chemie in Göttingen zum Ziel gesetzt, nach Möglichkeiten zur Überwindung der Beugungsgrenze zu suchen - und zwar für die Fluoreszenzmikroskopie. Fluoreszenz spielt in der Biologie eine wichtige Rolle, weil man Zellkomponenten gezielt mit Farbstoffmolekülen markieren und nach ihrer Anregung mit Licht in der Zelle beobachten kann. Bereits vor zwei Jahren zeigten die Max-Planck-Forscher, dass man mit Hilfe des aus der Laserphysik bekannten Phänomens der stimulierten Emission den fokalen Fleck eines Fluoreszenzmikroskops bis um das Fünffache verkleinern kann. Dabei werden die Farbstoffmoleküle, kurz nachdem sie mit einem (grünen) Lichtpuls angeregt wurden, von einem darauffolgenden stimulierenden (roten) Lichtpuls wieder abgeregt (engl.: Stimulated emission deletion, STED). Der abregende Puls wird ringförmig um den Anregungsfokus angeordnet, so dass die Moleküle in der Mitte des Rings vom Abregen verschont bleiben und das übrig gebliebene Fluoreszenzlicht somit aus einem viel schärferen Fleck stammt. Damit gelang es zum ersten Mal, die Beugungsgrenze in der Fluoreszenzmikroskopie zu überwinden.

"Abb. 1: Funktionsprinzip des STED-4Pi-Mikroskops: Die Interferenz der beiden roten Lichtpulse in einem gemeinsamen Fokuspunkt und die ausgeprägte, gesättigte Abregung der Fluoreszenz durch STED schnürt den fluoreszierenden Fleck entlang der optischen Achse (Z) ein. Der Fokus wird dadurch zu einem schmalen Diskus von nur 30-40 Nanometer Durchmesser, nur gut einem Zwanzigstel der Wellenlänge des in diesem Experiment benutzten Lichts (750 Nanometer). " "Grafik: Max-Planck-Institut für biophysikalische Chemie"

Unabhängig von der STED-Mikroskopie haben die Max-Planck-Forscher auch das so genannte 4Pi-konfokale Mikroskop konzipiert und gebaut. In diesem Verfahren werden zwei hochauflösende Objektive tête à tête auf denselben Punkt gerichtet, und zwar so, dass das beleuchtende Licht in einem gemeinsamen Fokus interferiert. Mit diesem Trick konnten sie die Auflösung eines Fluoreszenzmikroskops entlang der optischen Achse (Z) verdrei- bis versiebenfachen.

Marcus Dyba und Stefan Hell ist es nun gelungen, durch das synergetische Verbinden der beiden Mikroskopie-Prinzipien die axiale Auflösung eines Fluoreszenz-Mikroskops um mehr als das Fünfzehnfache zu steigern und damit erstmals in den Bereich von einigen Dutzend Nanometern vorzustoßen - ein Erfolg, der für ein Lichtmikroskop, das mit konventionellen Objektiven und fokussiertem Licht arbeitet, bisher kaum vorstellbar war. In dem neuen "STED-4Pi-Mikroskop" werden Farbstoffmoleküle - wie bei einem ‚normalen’ STED-Mikroskop - mit kurzwelligen grünen Laserpulsen angeregt, und mit rotverschobenen Laserpulsen durch stimulierte Emission wieder abgeregt. Der Unterschied besteht jedoch darin, dass hier der stimulierende Strahl dem Fokuspunkt (s. Abb. 1) über zwei gegeneinander gerichtete Objektive zugeführt wird - wie bei einem 4Pi-Mikroskop.

Die Forscher benutzten ihr STED-4Pi-Mikroskop, um bei einem membrangefärbten Bakterium (bacillus megaterium) in wässriger Umgebung Details sichtbar zu machen, die bisher mit fokussierender Fluoreszenzmikroskopie verborgen geblieben sind.

"Abb. 2: Aufnahme des Bakteriums bacillus megaterium (Ausschnitt). Das Bild ist entlang der optischen Achse (Z) und in eine lateral Richtung (X) aufgenommen. Die Membranen des Mikroorganismus sind als 30-35 Nanometer scharfe Linien zu erkennen; in einem herkömmlichen, konfokalen Mikroskop würden sie als ca. 800 Nanometer breite Streifen erscheinen. " "Grafik: Max-Planck-Institut für biophysikalische Chemie "

Um die Auflösung in der Fokalebene (X,Y) in gleicher Weise zu schärfen, planen die Wissenschaftler, in kurzer zeitlicher Abfolge zum Interferenzmuster ringförmige rote Pulse einzustrahlen, die den Lichtfleck-Diskus zu einem fast runden "Ball" von 30-40 Nanometer Durchmesser verengen. Gleichzeitig arbeiten sie daran, das Funktionsprinzip ihres Experiments auch in ein kompaktes Laser-Rastermikroskop zu integrieren, mit dem man zum Beispiel Prozesse an Zellmembranen beobachten kann. Doch das Prinzip der "STED-4Pi-Mikroskopie" könnte in Zukunft auch in der Lithographie - zur Herstellung von integrierten Schaltkreisen - und in der optischen Datenspeicherung von großer Bedeutung sein, da auch dort nach Methoden gesucht wird, sich bei der fortschreitenden Miniaturisierung nun die Nanometerskala mit sichtbarem Licht zu erschließen.

Dr. Bernd Wirsing | Presseinformation

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Startschuss für EU-Projekt: Charakterisierung der Schweißraupe für adaptives Laserauftragschweißen
15.11.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Innovatives Verfahren zur Aufbereitung von Raps
08.11.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte