Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Haifischhaut" für Flugzeuge

28.02.2007
Haut als biologisches Vorbild für neuartige Werkstoffoberflächenentwicklungen / Von der BTU initiiertes und koordiniertes DFG-Schwerpunktprogramm bewilligt
"Adaptive Oberflächen für Hochtemperaturanwendungen: Das 'Haut'- Konzept" lautet der Titel eines von der Deutschen Forschungsgemeinschaft (DFG) bundesweit geförderten Schwerpunktprogramms.

Inhalt des Programms, das im Rahmen von 13 Einzel- und Verbundprojekten über einen Zeitraum von 6 Jahren durchgeführt wird, ist die Erarbeitung von wissenschaftlichen Grundlagen zur Funktionalisierung von Oberflächen, die nach thermischer Aktivierung adaptive, also selbst anpassende, Eigenschaften ausbilden.

Zu solchen Eigenschaften zählen zum Beispiel die Selbstheilung bei lokaler Schädigung der Oberfläche, die Freisetzung von Schmierstoffen bei aufkommender Reibung, die Ausbildung von Nanostrukturen zum Abweisen von Flüssigkeiten (ähnlich dem Lotus-Effekt) sowie integriert eingebrachte Sensor-/Aktuatorelemente, die bei hohen Belastungen vor der Zerstörung der Werkstoffoberfläche warnen. Von der Natur lernend, sollen also für Werkstoffe Oberflächen mit Eigenschaften ähnlich denen des biologischen Vorbilds Haut entwickelt werden.

Die große Herausforderung für die Wissenschaftler besteht darin, vielfältige Eigenschaften bei Temperaturen oberhalb von 400°C zu erzielen und zu erhalten. Hierbei betreten die beteiligten Forschergruppen allesamt wissenschaftliches Neuland.

Die Koordinierung des im ersten 3-jährigen Förderabschnitt mit 5,5 Mio. Euro ausgestatteten Schwerpunktprogramms wird vom Mit-Initiator, Prof. Dr.-Ing. Christoph Leyens, Lehrstuhl Metallkunde und Werkstofftechnik der Cottbus Brandenburgischen Technischen Universität (BTU), wahrgenommen. Der BTU-Professor ist im Schwerpunktprogramm selbst mit zwei wissenschaftlichen Teilprojekten vertreten. Gemeinsam mit Wissenschaftlern der RWTH Aachen entwickelt er neuartige Dünnschichtsysteme, die Bauteiloberflächen aufgrund ihrer chemischen Zusammensetzung sowie ihrer besonderen Nanolaminatstruktur revolutionäre Eigenschaften verleihen, indem sie die Hitzebeständigkeit und Härte von Keramik mit der Bearbeitbarkeit und Schadenstoleranz von Metallen vereinen. Darüber hinaus will Prof. Leyens zusammen mit Forschern des Deutschen Zentrums für Luft- und Raumfahrt e.V., Köln, der DECHEMA e.V., Frankfurt/Main sowie der Technischen Universität Berlin eine spezielle Oberflächenstruktur für hoch belastete Turbinenschaufeln entwickeln. Entsprechende Folien, die Flugzeugen eine "Haifischhaut" verleihen und dabei helfen, erhebliche Mengen Kerosin durch einen verminderten Luftwiderstand einzusparen, wurden bereits erfolgreich getestet. Der BTU-Professor und seine Forscherkollegen streben mit ihrer Neuentwicklung nun Einsatztemperaturen bis etwa 1200°C an, wie sie in Flugtriebwerken herrschen. Ziel ist es dabei, den Verbrauch und damit auch die Schadstoffemission von Flugzeugantrieben zu verringern.

Ein weiteres an der BTU Cottbus gefördertes Projekt wird von Prof. Dr. Michael Scheffler, Inhaber des neu gegründeten Lehrstuhls Leichtbaukeramik, geleitet. In enger Kooperation mit Wissenschaftlern der Universität Bayreuth werden Schichtsysteme zur Herstellung adaptiver Oberflächen zunächst als Kunststoffschichten mit Hilfe sogenannter präkeramischer Polymere aufgebracht. Die dafür verwendeten siliciumorganischen Verbindungen, darunter auch die bekannten Silicone, können wie Kunststoffe verarbeitet und unter bestimmten Reaktionsbedingungen in spezieller Reaktionsatmosphäre zu keramischen Schichten umgewandelt werden. Mit Hilfe von Füllstoffen, die im Polymer vermischt auf die Oberfläche der zu funktionalisierenden Metalle aufgebracht werden, ist die Steuerung der Schichteigenschaften in weiten Grenzen möglich.

Die Einsatzgebiete solcher Schichtsysteme sind vielfältig: so können zum Beispiel wasserabweisende Schichten genutzt werden, um die Innenoberfläche chemischer Großreaktoren zur Treibstoffherstellung vor Korrosion durch Wasserdampf zu schützen oder mechanisch hoch belastete Teile können die Reibung selbst verringern, indem Sie ab einem bestimmten Druck auf ihre Oberfläche Schmierstoffe freisetzen.

Obwohl es sich beim Schwerpunktprogramm um ein von der Deutschen Forschungsgemeinschaft gefördertes Programm handelt, das wissenschaftlich überwiegend auf Grundlagenuntersuchungen ausgerichtet ist, haben viele Firmen ihr Interesse an einer Mitarbeit bekundet oder sind bereits Kooperationspartner. Grund dafür sind die zahlreichen Anwendungsmöglichkeiten der Forschungsergebnisse, die von der chemischen Industrie über Umwelttechnologie bis hin zur Luft- und Raumfahrt reichen.

Mit der Bewilligung durch die Deutsche Forschungsgemeinschaft fließen an die BTU Cottbus über die kommenden drei Jahre insgesamt rund 1 Mio. Euro Forschungsmittel, über die vier Mitarbeiterstellen, davon drei für wissenschaftliche Mitarbeiter und eine Koordinierungsstelle, sowie Investitions- und Sachmittel finanziert werden können.

Ansprechpartner an der BTU:
Prof. Dr.-Ing. Christoph Leyens (Projektkoordinator und Antragsteller),
Tel.: 0355/69-2815; Email: Leyens@tu-cottbus.de
Prof. Dr. Michael Scheffler (Antragsteller), Tel. 0355/69-3622;
Email: Scheffler@tu-cottbus.de

Margit Anders | idw
Weitere Informationen:
http://www.tu-cottbus.de

Weitere Berichte zu: BTU Luft- und Raumfahrt Schwerpunktprogramm

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Ausweg aus dem Chrom-Verbot
30.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie