Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulente Fäden

02.08.2006
Von der Autoinnenverkleidung bis zur Windel - überall werden Vliese gebraucht. Ziel der Hersteller ist es, immer strapazierfähigeres Gewebe mit möglichst wenig Kunststoffmaterial herzustellen. Ein Simulationsmodell soll helfen, die Vliesherstellung zu optimieren.

Vliesstoffe gehören zu den Dingen, die jeder braucht, aber kaum jemand wahrnimmt. Vliese halten Windeln zusammen, dämmen Mauerwerk und werden zum Auspolstern von Autotürverkleidungen genutzt. Je nach Verwendungszweck ändern sich die Ansprüche: Als Dämmstoff muss das Vlies überall gleich dicht sein, bei Windeln darf es nicht reißen. Die Hersteller wollen diese Ansprüche mit möglichst wenig Material erfüllen. Tatsächlich sind Windelvliese heute deutlich dünner als noch vor zehn Jahren und dennoch strapazierfähiger.


Vom Faden zum Vlies: Die Simulation zeigt, wie eine chaotische Vliesstruktur entsteht. © Fraunhofer ITWM

Die Optimierung der Vliesproduktion hat es jedoch in sich: Vliesstoffe entstehen aus hauchzarten Kunststofffäden, die von Tausenden kleiner Düsen hergestellt werden. Durch einen Luftstrom werden diese "Filamente" in die Länge gezogen und schließlich - Filament für Filament - auf einer Art Förderband abgelegt. Ganz ohne Weben und Strickerei entsteht dabei die zarte Vliesschicht. Das Problem: Die flatternden Fäden im turbulenten Luftstrom lassen sich schwer steuern. Sie bewegen sich zufällig, verteilen sich stochastisch nach den Gesetzen der Wahrscheinlichkeitsrechnung auf dem Förderband.

Die Gruppe um Dr. Dietmar Hietel vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern untersucht und berechnet die turbulente Entstehung der Vliese und simuliert sie im Computer. Dafür entwickelte das Fraunhofer-Team mathematische Modelle und das Simulationstool FIDYST. Mit ihm lassen sich Fadenbewegungen und Dichteverteilungen simulieren - allerdings nur in bunten Farben. "Mit diesen farbigen Bildern können Vliesexperten nicht viel anfangen. Für sie ist eine reale Darstellung der weichen Vliesstruktur wichtig", sagt André Stork vom Fraunhofer-Institut für Graphische Datenverarbeitung IGD in Darmstadt. Er hat jetzt die Simulationssoftware IFX entwickelt, die die Dichtebilder weiter verarbeiten kann und am Ende die chaotische Vliesstruktur täuschend real abbildet.

Das ehrgeizige Ziel, die Simulation so einzustellen, dass ein ideales Vlies entsteht, war damit erreicht. Und tatsächlich lassen sich mit Hilfe des Simulationsprogramms auch reale Maschinen steuern. Zusammen mit dem Maschinenhersteller Neumag aus Neumünster wollen die Forscher künftig Vliesanlagen optimieren.

Marion Horn | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de
http://www.fraunhofer.de/fhg/press/pi/2006/08/Mediendienst82006Thema3.jsp

Weitere Berichte zu: Fäden Graphische Datenverarbeitung Vlies Vliesstruktur

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie