Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glasfasern überwachen Teilchenbeschleuniger

21.12.2001


Lebende Zellen sind klein und die in ihnen ablaufenden Prozesse schnell. Gern würden Wissenschaftler dabei zusehen, wie sich große Moleküle und Zellbestandteile bewegen oder miteinander reagieren. Die bisher eingesetzten Messmethoden sind dazu jedoch nicht genau genug. Viel Hoffnung setzen sie auf den Freien Elektronenlaser, der »weiche« Röntgenstrahlung mit den erforderlichen hohen Intensitäten und kurzen Pulsdauern liefert. Ein Beispiel dafür ist das aktuelle TESLA-Projekt der Großforschungseinrichtung Deutsches Elektronen-Synchrotron DESY. Bei positivem Ausgang des Genehmigungsverfahrens wird in den kommenden Jahren in der Nähe von Hamburg ein insgesamt 33 Kilometer langer geradliniger Kollisionsbeschleuniger für Elektronen und Positronen gebaut.


Bei einer solchen Länge und der erforderlichen Strahlgenauigkeit von einem halben Millimeter tritt gerade in der Bau- und Testphase auch der Vorgängeranlagen der unerwünschte Effekt auf, dass die fliegenden Teilchen mit der Rohrwand oder Bauteilen kollidieren und verloren gehen. Die dabei freigesetzte hochenergetische Sekundärstrahlung stellt zudem eine Gefahr für die Elektronik dar, die den Beschleuniger umgibt. Um diese austretende Strahlung zu messen, haben Forscher vom Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT faseroptische Sensoren in die Anlage integriert. Gegenüber anderen Systemen bieten sie einige Vorteile: Sie sind unempfindlich gegen Störungen und die verwendeten Glasfasern sind so dünn, dass selbst in dem nur einen halben Millimeter breiten Spalt zwischen Beschleunigerrohr und Undulatormagneten gemessen werden kann. Zudem ersetzen sie viele Einzelsensoren. »An neuralgischen Stellen haben wir die Glasfasern in mehreren Windungen um das Rohr gewickelt. Dies führt zu einer hohen Messgenauigkeit. Zur Überwachung von Strecken bis zu einigen hundert Metern verlaufen sie parallel zu ihm«, beschreibt Dr. Henning Henschel die zwei Varianten des optischen Messverfahrens. »Trifft ionisierende Strahlung auf die Glasfaser, ändern sich dort deren optische Eigenschaften. Aus der Laufzeit eingestrahlter Lichtpulse berechnet ein Optical Time Domain Reflectometer Ort und Stärke dieser Strahlung.«

Die faseroptischen Strahlungssensoren eignen sich nicht nur dazu, um Teilchenbeschleuniger zu überwachen und zu justieren. Dr. Henschel kann sich durchaus vorstellen, dass sie in Zukunft dazu eingesetzt werden, kontinuierlich die Strahlung an Castorbehältern oder in ausgedehnten Lagerstätten für radioaktives Material zu messen.

Dr. Henning Henschel | Fraunhofer Gesellschaft
Weitere Informationen:
http://tesla.desy.de/

Weitere Berichte zu: Glasfaser Strahlung Teilchenbeschleuniger

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie