Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonden für Lichtmikroskopie mit 40 Nanometern Auflösung entwickelt und serienfertig

23.11.2001


Entwicklung der Kasseler Nanotechnologie ist Durchbruch für die Lichtmikroskopie

Ein Durchbruch in der Lichtmikroskopie zu wesentlich höheren Auflösungen stellt eine von Kasseler Wissenschaftlern entwickelte und nun auch serienmäßig reproduzierbare Sonde dar. In der Lichtmikroskopie, mit der u.a. Oberflächen und Substrate etwa auf Datenträgerschichten untersucht werden, kann durch die Kasseler Koaxial-Sonde eine sechsfach höhere Auflösung und damit Genauigkeit erreicht werden. In einem konventionellen Lichtmikroskop sind die kleinsten noch sichtbaren Strukturen aufgrund von Beugungsvorgängen durch die Wellenlänge des Lichtes bestimmt. Das bedeutet, dass bislang nur eine Strukturauflösung von 200 bis 380 Nanometern erreicht werden konnte. Mit dem Elektronenmikroskop können zwar Strukturen, die noch kleiner als die Wellenlänge des sichtbaren Lichtes sind, sichtbar gemacht werden, allerdings nur unter Vakuumbedingungen und leider nicht immer zerstörungsfrei. In neuerer Zeit bietet daher die Mikro- und Nanotechnologie zusätzliche Entwicklungsmöglichkeiten, die die Kasseler Wissenschafter Dr. Egbert Oesterschulze und Dr. Iwo Rangelow im Institut für Technische Physik im Institut für Mikrostrukturtechnologie und Analytik (IMA) der Universität Kassel unter Leitung von Prof. Dr. Rainer Kassing genutzt haben.

Dabei war eine große Schwierigkeit zu überwinden: Denn wenn man versucht Licht, z.B. eines Lasers, durch eine Öffnung zu senden, die kleiner als die Wellenlänge des Lichtes ist, so wird fast die gesamte Lichtintensität reflektiert und nur ein winziger Bruchteil von ca. 10-5 der Anfangsintensität dringt durch die Öffnung. Diese klingt jedoch exponentiell, d.h. auf außerordentlich kurzer Distanz, auf praktisch Null ab. Geht man jedoch mit einem optisch zu untersuchenden Substrat ganz nahe (im Nanometerbereich) an diese Öffnung heran, so kann die durch die kleine Öffnung durchtretende Lichtmenge zur optischen Charakterisierung des Substrates genutzt werden. Damit hat man also eine Auflösung erreicht, die nicht wie beim klassischen Mikroskop durch die Wellenlänge, sondern durch die Größe der Öffnung - auch Apertur genannt - bestimmt wird. Da man zur Aufnahme eines Bildes die Öffnung über die zu untersuchende Oberfläche bewegt bzw. rastert, nennt man diese Art der Mikroskopie auch "Optische Raster-Nahfeld-Mikroskopie", bzw. englisch "Scanning Nearfield Optical Microscopy" (SNOM). Für die praktische Durchführung von Messungen hat es sich als vorteilhaft erwiesen, die ultrakleinen Öffnungen in Hohlspitzen zu integrieren, da diese viel besser zur Abtastung der Oberfläche geeignet sind.

Ein Problem für die SNOM besteht nun darin, diese kleinen Hohlspitzen mit der integrierten Öffnung mit den Methoden der Mikro-Technologie reproduzierbar herzustellen. Das gelang erstmals der Arbeitsgruppe von Dr. Dipl.-Phys. Egbert Oesterschulze mit einem neuartigen zum Patent eingereichten Verfahren. So ist es möglich Hohlspitzen mit etwa 40 bis 80 Nanometern großen Öffnungen zu realisieren (s. Abb 1 a)).

"copyright: Universität Gesamthochschule Kassel, Institut für Mikrostrukturtechnologie und Analytik"

Doch es ist leicht vorstellbar, dass solch kleine Öffnungen nur sehr wenig Licht durchlassen- so, als wollte man etwa durch eine eng zulaufende Kanüle hindurch etwas erkennen. Um diesen Nachteil der reinen Apertursensoren auszugleichen, ging die Arbeitsgruppe um Oesterschulze einen neuen Weg. Sie zogen in die Mitte des nur weniger als ein tausendstel Haardruchmesser großen Apertursensors einen Draht ein und erhöhte so die durchgelassene Lichtintensität, vergleichbar, als schöbe man durch die oben beschriebene Kanüle noch ein Fädchen ohne jedoch die Kanüle zu berühren. Damit wird das elektrische Feld der Lichtwelle zwischen Innen- und Außenleiter geführt und somit die Lichtintensität deutlich gesteigert. Der Grundgedanke dabei ist der gleiche wie bei jedem elektrischen Koaxialkabel (z.B. beim Antennenkabel eines Fernsehers). Durch ein solches Antennenkabel mit einem Durchmesser von wenigen Millimetern gehen elektromagnetische Wellen mit Wellenlängen von einigen Metern, und zwar praktisch ohne Intensitätsverlust. Dies ist nur möglich, weil in dem Kabel mittig der Innenleiter zur Feldführung angebracht ist. Daher nennt man diese Vorrichtung Koaxialleiter.

Weltweit erstmals Nano-Sonde mit Nano-Koaxialleiter hergestellt Im Kasseler Institut für Mikrostrukturtechnologie und Analytik gelang es weltweit erstmals, eine solche Sonde mit einem sogenannten Koaxialleiter (s. Abb. 1b)) zu versehen. Allerdings wurde dieser Innenleiter noch einzeln produziert, d.h. zunächst wurden die Apertursensoren hergestellt und dann nachträglich der Innenleiter des der Koaxialleiters durch die Abscheidung von leitfähigem Material mit einem fokussierten Ionenstrahl (FIB) realisiert.

Nun auch Serienproduktion möglich Aus der Phase des Prototyps in den Bereich der Serienreife brachten weitere Arbeiten im IMA die sogenannte Kasseler Koaxial-Apertur-Sonde. Hier gelang es der Arbeitsgruppe von Dr. Ivo Rangelow, solche Apertur-Sonden mit einem Koaxial-Leiter (s. Abb. 1c)) serienmäßig herzustellen. Damit ist der Weg zur industriellen Nutzung dieser Technologie geebnet. Diese Methode wurde ebenfalls zum Patent angemeldet.

Im Institut für Technische Physik, in dem Physiker, Elektrotechniker, Chemiker und Biologen zusammenarbeiten, wird seit einigen Jahren versucht, mit den Mitteln der Mikro- und Nanotechnologie durch die Kombination von Physik und Technologie, und zwar von den Grundlagen bis zur Anwendung wissenschaftliche und technische Fortschritte zu erzielen.

Ingrid Hildebrand | Pressemitteilung der GhK
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Lichtmikroskopie Nanometer Physik Sonde Wellenlänge

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neues Laserstrahl-Schweißverfahren des Fraunhofer IWS erlangt die Zertifizierung der DNV GL
16.05.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften