Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonden für Lichtmikroskopie mit 40 Nanometern Auflösung entwickelt und serienfertig

23.11.2001


Entwicklung der Kasseler Nanotechnologie ist Durchbruch für die Lichtmikroskopie

Ein Durchbruch in der Lichtmikroskopie zu wesentlich höheren Auflösungen stellt eine von Kasseler Wissenschaftlern entwickelte und nun auch serienmäßig reproduzierbare Sonde dar. In der Lichtmikroskopie, mit der u.a. Oberflächen und Substrate etwa auf Datenträgerschichten untersucht werden, kann durch die Kasseler Koaxial-Sonde eine sechsfach höhere Auflösung und damit Genauigkeit erreicht werden. In einem konventionellen Lichtmikroskop sind die kleinsten noch sichtbaren Strukturen aufgrund von Beugungsvorgängen durch die Wellenlänge des Lichtes bestimmt. Das bedeutet, dass bislang nur eine Strukturauflösung von 200 bis 380 Nanometern erreicht werden konnte. Mit dem Elektronenmikroskop können zwar Strukturen, die noch kleiner als die Wellenlänge des sichtbaren Lichtes sind, sichtbar gemacht werden, allerdings nur unter Vakuumbedingungen und leider nicht immer zerstörungsfrei. In neuerer Zeit bietet daher die Mikro- und Nanotechnologie zusätzliche Entwicklungsmöglichkeiten, die die Kasseler Wissenschafter Dr. Egbert Oesterschulze und Dr. Iwo Rangelow im Institut für Technische Physik im Institut für Mikrostrukturtechnologie und Analytik (IMA) der Universität Kassel unter Leitung von Prof. Dr. Rainer Kassing genutzt haben.

Dabei war eine große Schwierigkeit zu überwinden: Denn wenn man versucht Licht, z.B. eines Lasers, durch eine Öffnung zu senden, die kleiner als die Wellenlänge des Lichtes ist, so wird fast die gesamte Lichtintensität reflektiert und nur ein winziger Bruchteil von ca. 10-5 der Anfangsintensität dringt durch die Öffnung. Diese klingt jedoch exponentiell, d.h. auf außerordentlich kurzer Distanz, auf praktisch Null ab. Geht man jedoch mit einem optisch zu untersuchenden Substrat ganz nahe (im Nanometerbereich) an diese Öffnung heran, so kann die durch die kleine Öffnung durchtretende Lichtmenge zur optischen Charakterisierung des Substrates genutzt werden. Damit hat man also eine Auflösung erreicht, die nicht wie beim klassischen Mikroskop durch die Wellenlänge, sondern durch die Größe der Öffnung - auch Apertur genannt - bestimmt wird. Da man zur Aufnahme eines Bildes die Öffnung über die zu untersuchende Oberfläche bewegt bzw. rastert, nennt man diese Art der Mikroskopie auch "Optische Raster-Nahfeld-Mikroskopie", bzw. englisch "Scanning Nearfield Optical Microscopy" (SNOM). Für die praktische Durchführung von Messungen hat es sich als vorteilhaft erwiesen, die ultrakleinen Öffnungen in Hohlspitzen zu integrieren, da diese viel besser zur Abtastung der Oberfläche geeignet sind.

Ein Problem für die SNOM besteht nun darin, diese kleinen Hohlspitzen mit der integrierten Öffnung mit den Methoden der Mikro-Technologie reproduzierbar herzustellen. Das gelang erstmals der Arbeitsgruppe von Dr. Dipl.-Phys. Egbert Oesterschulze mit einem neuartigen zum Patent eingereichten Verfahren. So ist es möglich Hohlspitzen mit etwa 40 bis 80 Nanometern großen Öffnungen zu realisieren (s. Abb 1 a)).

"copyright: Universität Gesamthochschule Kassel, Institut für Mikrostrukturtechnologie und Analytik"

Doch es ist leicht vorstellbar, dass solch kleine Öffnungen nur sehr wenig Licht durchlassen- so, als wollte man etwa durch eine eng zulaufende Kanüle hindurch etwas erkennen. Um diesen Nachteil der reinen Apertursensoren auszugleichen, ging die Arbeitsgruppe um Oesterschulze einen neuen Weg. Sie zogen in die Mitte des nur weniger als ein tausendstel Haardruchmesser großen Apertursensors einen Draht ein und erhöhte so die durchgelassene Lichtintensität, vergleichbar, als schöbe man durch die oben beschriebene Kanüle noch ein Fädchen ohne jedoch die Kanüle zu berühren. Damit wird das elektrische Feld der Lichtwelle zwischen Innen- und Außenleiter geführt und somit die Lichtintensität deutlich gesteigert. Der Grundgedanke dabei ist der gleiche wie bei jedem elektrischen Koaxialkabel (z.B. beim Antennenkabel eines Fernsehers). Durch ein solches Antennenkabel mit einem Durchmesser von wenigen Millimetern gehen elektromagnetische Wellen mit Wellenlängen von einigen Metern, und zwar praktisch ohne Intensitätsverlust. Dies ist nur möglich, weil in dem Kabel mittig der Innenleiter zur Feldführung angebracht ist. Daher nennt man diese Vorrichtung Koaxialleiter.

Weltweit erstmals Nano-Sonde mit Nano-Koaxialleiter hergestellt Im Kasseler Institut für Mikrostrukturtechnologie und Analytik gelang es weltweit erstmals, eine solche Sonde mit einem sogenannten Koaxialleiter (s. Abb. 1b)) zu versehen. Allerdings wurde dieser Innenleiter noch einzeln produziert, d.h. zunächst wurden die Apertursensoren hergestellt und dann nachträglich der Innenleiter des der Koaxialleiters durch die Abscheidung von leitfähigem Material mit einem fokussierten Ionenstrahl (FIB) realisiert.

Nun auch Serienproduktion möglich Aus der Phase des Prototyps in den Bereich der Serienreife brachten weitere Arbeiten im IMA die sogenannte Kasseler Koaxial-Apertur-Sonde. Hier gelang es der Arbeitsgruppe von Dr. Ivo Rangelow, solche Apertur-Sonden mit einem Koaxial-Leiter (s. Abb. 1c)) serienmäßig herzustellen. Damit ist der Weg zur industriellen Nutzung dieser Technologie geebnet. Diese Methode wurde ebenfalls zum Patent angemeldet.

Im Institut für Technische Physik, in dem Physiker, Elektrotechniker, Chemiker und Biologen zusammenarbeiten, wird seit einigen Jahren versucht, mit den Mitteln der Mikro- und Nanotechnologie durch die Kombination von Physik und Technologie, und zwar von den Grundlagen bis zur Anwendung wissenschaftliche und technische Fortschritte zu erzielen.

Ingrid Hildebrand | Pressemitteilung der GhK
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Lichtmikroskopie Nanometer Physik Sonde Wellenlänge

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Dresdner Forscher drucken die Welt von Morgen
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Neues Verfahren bringt komplex geformte Verbundwerkstoffe in die Serie
23.01.2017 | Evonik Industries AG

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie