Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saubere Abgase: Plasmen zersetzen bei niedriger Temperatur sogar kleinste Rußpartikel

17.10.2001


So werden die Abgase sauber: Schema des im INP entwickelten Verfahrens, das Filter- und Plasmatechnik kombiniert


Niedertemperatur-Plasmen reinigen Abgase schon bei Temperaturen unter 200°C. Und sie sind gründlich. Auch winzige Schadstoffteilchen werden im Plasma unschädlich gemacht. Diese günstigen Eigenschaften nutzten Wissenschaftler des Greifswalder Institutes für Niedertemperatur-Plasmaphysik (INP) und entwickelten einen Plasmareaktor für die Reinigung von Dieselabgasen. Kern der Sache: Eine poröse Elektrode, die auch als Filter wirkt. Jetzt erkunden sie weitere Anwendungsmöglichkeiten ihrer inzwischen patentierten Methode.

... mehr zu:
»Abgas »Elektrode »INP »Plasma »Rußpartikel »Temperatur

Rußpartikel im Abgas trüben das ansonsten recht gute Image von modernen Dieselfahrzeugen. Die Verbesserung der Motortechnik sorgt zwar für weniger Rußausstoß, indem die Gesamtmasse der Rußteilchen reduziert wurde. Gleichwohl konnte keine nennenswerte Verbesserung bei der Konzentration der sog. Nanopartikel erzielt werden. Nanopartikel sind Schadstoffteilchen in der Größenordnung von 10 bis 1000 Nanometer (1µm=1000 nm). Werden sie eingeatmet, dringen sie bis in die Lungenbläschen vor und lagern sich dort oft Jahre lang an, warnen Umweltmediziner. Ruß-Nanopartikel stehen im Verdacht, für Atemwegs- und Krebserkrankungen verantwortlich zu sein.

Auf der Grundlage unterschiedlicher Technologien wird intensiv daran geforscht, das Problem der Rußpartikel in den Griff zu bekommen. "Es liegt nahe, zu diesem Problemkreis Niedertemperatur-Plasmen zu untersuchen, bekannt für ihre enorme Reaktivität auch bei niedrigen Temperaturen," sagt Dr. Siegfried Müller. "In einem Plasma," erklärt der INP-Physiker, "können mit gutem elektrischen Wirkungsgrad Ionisations- und Dissoziationsvorgänge durch Elektronenstöße herbeigeführt werden. Die niedrige Gastemperatur ermöglicht die Erzeugung von thermisch instabilen, reaktiven Ausgangsprodukten, z.B. Radikalen. Es können so chemische Verbindungen erzeugt oder aufgespalten werden."


Kern des Prinzips: Einsatz einer porösen Elektrode

Als außerordentlich wirksam für die Nachbehandlung von Abgasen erwies sich eine Kombination aus Filtertechnik und Normaldruckplasma. "Das Plasma wird jeweils zwischen zwei Elektroden mit einer Wechselspannungsversorgung erzeugt, mindestens eine der Elektroden ist mit einer Isolierschicht bedeckt. Man nennt das eine dielektrisch behinderte Entladung," erläutert Dr. Müller. "Das Besondere an unserem Verfahren ist eine Entladungsanordnung mit poröser Elektrode. Dadurch erhöht sich die Verweildauer der Rußpartikel im Plasma. Wird nun das Abgas durch diesen Plasmabehandlungsraum geleitet, bilden sich Radikale und es kommt zu plasmachemischen Reaktionen an den Rußoberflächen. Die Rußpartikel oxidieren zu CO und CO2. Schon bei Abgastemperaturen von ca. 190°C werden die Rußpartikel unschädlich gemacht."

Wirkungsvoll bei niedrigen Temperaturen

Mit dieser Methode kann ein Problem der bisher üblichen Partikelfilter gelöst werden. Diese filtern zwar den Ruß über den gesamten Bereich der Größenverteilung aus dem Abgas, allerdings muss der gespeicherte Ruß verbrannt werden um eine Verstopfung der Partikelfilter zu vermeiden. Ruß brennt jedoch erst bei Temperaturen oberhalb von 550 °C ausreichend schnell ab. Da die Dieselabgase diese Temperaturen nicht oder nur selten erreichen, sind zusätzliche Maßnahmen zur Regeneration erforderlich, z.B. Aufheizung oder Maßnahmen zur Herabsetzung der Verbrennungstemperatur, wie Kraftstoffzusätze.

Die im INP entwickelte Kombination von Plasma- und Filtertechnik ermöglicht dagegen eine kontinuierliche Zersetzung von Ruß im Dieselabgas bei normaler Betriebstemperatur. Weder sind Additive zur Herabsetzung der Verbrennungstemperatur von Ruß erforderlich, noch Maßnahmen zur Temperaturerhöhung für eine effektive Verbrennung. Wolfgang Reich, Labor-Ingenieur am INP, zählt weitere Vorteile auf: "Die Plasmareinigung lässt sich in Abhängigkeit von der Beladung je nach Motorlast leicht und schnell steuern. Der Leistungsbedarf für die Rußabreinigung ist gering, z.B. 67 W Plasmaleistung für einen 2l-Dieselmotor nach EURO 3. Auch an die Kraftstoffzusammensetzung werden keine speziellen Anforderungen gestellt. Das Verfahren kann mit anderen Abgasreinigungsverfahren - etwa durch Einbringung von katalytischen Materialien zur NO-Minderung - leicht kombiniert werden. Eine einfache Nachrüstung älterer Fahrzeuge ist möglich."

Dieses neu entwickelte Verfahren ließ sich das INP patentieren. Noch sind einige Fragen der technischen Umsetzung zu klären, aber die Wissenschaftler bedenken schon den nächsten Schritt. Die Forschungsergebnisse bieten nämlich eine vielversprechende Grundlage für weitere Projekte zum Thema nachhaltige Abgasreinigung. So gilt es zu klären, ob das Prinzip auch auf andere Schadstoffe aus Verbrennungsprozessen angewendet oder wie es mit anderen Schadstoffreinigungsverfahren verknüpft werden kann. Das Fernziel könnte heißen: Saubere Abgase aus allen Leitungen.

Ansprechpartner für Rückfragen:
Dr. Siegfried Müller, Tel: 03834 - 554 300,
E-Mail: muellers@inp-greifswald.de

Ausführliche Informationen finden Sie in "INP aktuell", als PDF unter www.inp-greifswald.de -> aktuelles

Anke Wagner | idw
Weitere Informationen:
http://www.inp-greifswald.de

Weitere Berichte zu: Abgas Elektrode INP Plasma Rußpartikel Temperatur

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

 
VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Weitere B2B-VideoLinks
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen