Neuer Lasersensor entwickelt

Neuer Lasersensor ermöglicht so präzise Spalt- und Schwingungsmessungen bei Turbomaschinen wie noch nie

Einer Kooperation zwischen der Technischen Universität Dresden und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) ist es jetzt gelungen, sowohl die in der Turbinentechnik entscheidende Größe der Spaltweite zwischen den rotierenden Schaufeln und dem Turbinengehäuse als auch die Schwingungen, die bei den Umdrehungsgeschwindigkeiten der Schaufeln im Überschallbereich entstehen, noch präziser als bisher zu messen. Dazu haben Wissenschaftler um Prof. Jürgen Czarske, Professor für Mess- und Prüftechnik an der Fakultät Elektrotechnik und Informationstechnik der TU Dresden, einen neuartigen Lasersensor entwickelt, welcher die bekannten Vorteile der Lasertechnik benutzt, aber über Geschwindigkeiten hinaus auch Positionen bestimmen kann.

Mechanische und thermische Einflüsse führen zu einer ständigen minimalen Veränderung der Spaltweite im Mikrometerbereich, der jedoch für den funktionierenden Betrieb der Turbomaschine fortwährend kontrolliert werden muss und zudem wirtschaftliche Bedeutung besitzt. Eine so genau und gering wie möglich eingestellte Spaltweite, die in der Regel bei circa 0,5 mm liegt, kann bei dem hohen Energieverbrauch der Turbomaschinen schließlich zu enormen Kosteneinsparungen führen. Herkömmlich wird die Spaltweite durch so genannte kapazitive Messungen bestimmt, die über elektrische Sensoren am Gehäuse erfolgen. Da diese jedoch weniger genau und nur bei metallischen Stoffen anwendbar sind, ist das neue Lasermessverfahren vor allem für die Flugzeugindustrie interessant, die zunehmend auf Leichtbauweise setzt. So eignet sich der neuartige Lasersensor auch bei Schaufeln aus Keramik und Kunststoff (Faser-Verbundwerkstoff).

Die neue Technologie basiert auf dem bekannten Laser-Doppler-Verfahren, wobei die TU-Wissenschaftler einen Sensor entwickelt haben, der mit der elektronischen Signalverarbeitung von zwei Doppler-Frequenzen – statt wie bisher üblich einer – für zwei Laserwellenlängen (rotes und infrarotes Licht) die mathematische Errechnung der Spaltweite erlaubt. Dabei werden zwei Laserwellenlängen über ein Glasfaserkabel an einen Messkopf gesendet, der sich an der Außenwand der Turbine befindet. Von dort gelangen die Laserstrahlen über ein Fenster an die Schaufeln, die die Strahlen reflektieren. Die zurückgegebenen optischen Signale werden schließlich in elektrische Signale umgewandelt und mit einem Computer ausgewertet.

Der Modellversuch wurde an einer Turbine am Institut für Antriebstechnik des DLR in Köln durchgeführt. Die Forscher entwickelten für das neue Messprinzip einen optischen Messkopf, der so kompakt und robust ist, dass er die durch die Umfangsgeschwindigkeit der Turbine im Überschallbereich (586 m/s) bedingten Vibrationen unbeschadet übersteht. Der Messkopf wurde eigens an der Professur für Mess- und Prüftechnik gebaut und enthält ein integriertes Kühlsystem, sodass die Messungen auch bei Temperaturen bis 300C möglich sind. Während des Versuchs passierten die Schaufelblätter 22.000 Mal pro Sekunde die Messstelle. Der Spaltabstand konnte dabei auf 20m genau bestimmt werden – ein neuer Rekord! Bisher lag die Messunsicherheit bei 100m.

Neben der Änderung des Spaltabstands war die messgenaue Detektion der Schwingungen der Turbinenschaufeln für die Wissenschaftler ein ungeplantes, aber willkommenes Ergebnis. Dies war möglich, da jeder Schaufel ein genauer Messwert zugeordnet und somit eine zeitliche Veränderung der Position gemessen werden konnte. Professor Czarske führt den Erfolg der Forschungen auf die Synergieeffekte bei der Zusammenarbeit von Elektrotechnikern, Maschinenbauern und Physikern in seinem Team zurück.

Der bereits patentierte Lasersensor ermöglicht eine Online-Kontrolle der Spaltweite zwischen den rotierenden Schaufeln und dem Gehäuse von Turbomaschinen. Im Auftrag der Bosch GmbH wird er bereits bei der Entwicklung eines Elektromotors eingesetzt. Einen wichtigen Anwendungsbereich des Lasersensors stellen aber auch Werkzeugmaschinen dar, z.B. Dreh-, Fräs- und Schleifmaschinen, sodass während der Bearbeitung des Werkstücks sowohl Abtrag als auch absoluter Durchmesser bestimmt werden können. Für weitergehende Forschungen – so soll der Sensor weiter miniaturisiert und verfeinert werden, um schließlich in Massenproduktion überzugehen – ist das Team um Prof. Czarske gegenwärtig auf der Suche nach Industriepartnern.

Media Contact

Kim-Astrid Magister idw

Weitere Informationen:

http://www.tu-dresden.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer