Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Lasersensor entwickelt

13.12.2005


Neuer Lasersensor ermöglicht so präzise Spalt- und Schwingungsmessungen bei Turbomaschinen wie noch nie


Einer Kooperation zwischen der Technischen Universität Dresden und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) ist es jetzt gelungen, sowohl die in der Turbinentechnik entscheidende Größe der Spaltweite zwischen den rotierenden Schaufeln und dem Turbinengehäuse als auch die Schwingungen, die bei den Umdrehungsgeschwindigkeiten der Schaufeln im Überschallbereich entstehen, noch präziser als bisher zu messen. Dazu haben Wissenschaftler um Prof. Jürgen Czarske, Professor für Mess- und Prüftechnik an der Fakultät Elektrotechnik und Informationstechnik der TU Dresden, einen neuartigen Lasersensor entwickelt, welcher die bekannten Vorteile der Lasertechnik benutzt, aber über Geschwindigkeiten hinaus auch Positionen bestimmen kann.

Mechanische und thermische Einflüsse führen zu einer ständigen minimalen Veränderung der Spaltweite im Mikrometerbereich, der jedoch für den funktionierenden Betrieb der Turbomaschine fortwährend kontrolliert werden muss und zudem wirtschaftliche Bedeutung besitzt. Eine so genau und gering wie möglich eingestellte Spaltweite, die in der Regel bei circa 0,5 mm liegt, kann bei dem hohen Energieverbrauch der Turbomaschinen schließlich zu enormen Kosteneinsparungen führen. Herkömmlich wird die Spaltweite durch so genannte kapazitive Messungen bestimmt, die über elektrische Sensoren am Gehäuse erfolgen. Da diese jedoch weniger genau und nur bei metallischen Stoffen anwendbar sind, ist das neue Lasermessverfahren vor allem für die Flugzeugindustrie interessant, die zunehmend auf Leichtbauweise setzt. So eignet sich der neuartige Lasersensor auch bei Schaufeln aus Keramik und Kunststoff (Faser-Verbundwerkstoff).


Die neue Technologie basiert auf dem bekannten Laser-Doppler-Verfahren, wobei die TU-Wissenschaftler einen Sensor entwickelt haben, der mit der elektronischen Signalverarbeitung von zwei Doppler-Frequenzen - statt wie bisher üblich einer - für zwei Laserwellenlängen (rotes und infrarotes Licht) die mathematische Errechnung der Spaltweite erlaubt. Dabei werden zwei Laserwellenlängen über ein Glasfaserkabel an einen Messkopf gesendet, der sich an der Außenwand der Turbine befindet. Von dort gelangen die Laserstrahlen über ein Fenster an die Schaufeln, die die Strahlen reflektieren. Die zurückgegebenen optischen Signale werden schließlich in elektrische Signale umgewandelt und mit einem Computer ausgewertet.

Der Modellversuch wurde an einer Turbine am Institut für Antriebstechnik des DLR in Köln durchgeführt. Die Forscher entwickelten für das neue Messprinzip einen optischen Messkopf, der so kompakt und robust ist, dass er die durch die Umfangsgeschwindigkeit der Turbine im Überschallbereich (586 m/s) bedingten Vibrationen unbeschadet übersteht. Der Messkopf wurde eigens an der Professur für Mess- und Prüftechnik gebaut und enthält ein integriertes Kühlsystem, sodass die Messungen auch bei Temperaturen bis 300C möglich sind. Während des Versuchs passierten die Schaufelblätter 22.000 Mal pro Sekunde die Messstelle. Der Spaltabstand konnte dabei auf 20m genau bestimmt werden - ein neuer Rekord! Bisher lag die Messunsicherheit bei 100m.

Neben der Änderung des Spaltabstands war die messgenaue Detektion der Schwingungen der Turbinenschaufeln für die Wissenschaftler ein ungeplantes, aber willkommenes Ergebnis. Dies war möglich, da jeder Schaufel ein genauer Messwert zugeordnet und somit eine zeitliche Veränderung der Position gemessen werden konnte. Professor Czarske führt den Erfolg der Forschungen auf die Synergieeffekte bei der Zusammenarbeit von Elektrotechnikern, Maschinenbauern und Physikern in seinem Team zurück.

Der bereits patentierte Lasersensor ermöglicht eine Online-Kontrolle der Spaltweite zwischen den rotierenden Schaufeln und dem Gehäuse von Turbomaschinen. Im Auftrag der Bosch GmbH wird er bereits bei der Entwicklung eines Elektromotors eingesetzt. Einen wichtigen Anwendungsbereich des Lasersensors stellen aber auch Werkzeugmaschinen dar, z.B. Dreh-, Fräs- und Schleifmaschinen, sodass während der Bearbeitung des Werkstücks sowohl Abtrag als auch absoluter Durchmesser bestimmt werden können. Für weitergehende Forschungen - so soll der Sensor weiter miniaturisiert und verfeinert werden, um schließlich in Massenproduktion überzugehen - ist das Team um Prof. Czarske gegenwärtig auf der Suche nach Industriepartnern.

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Berichte zu: Lasersensor Luft- und Raumfahrt Messkopf Sensor Turbomaschine

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Verfahren bringt komplex geformte Verbundwerkstoffe in die Serie
23.01.2017 | Evonik Industries AG

nachricht Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile
19.01.2017 | Fraunhofer IFAM

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EU-Projekt: Bilder leistungsstark und energieeffizient verarbeiten

24.01.2017 | Förderungen Preise

„Allen Unkenrufen zum Trotz“ Neues Projekt sorgt für Schutz der Gelbbauchunken in Bayern

24.01.2017 | Förderungen Preise

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungsnachrichten