Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Lasersensor entwickelt

13.12.2005


Neuer Lasersensor ermöglicht so präzise Spalt- und Schwingungsmessungen bei Turbomaschinen wie noch nie


Einer Kooperation zwischen der Technischen Universität Dresden und dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) ist es jetzt gelungen, sowohl die in der Turbinentechnik entscheidende Größe der Spaltweite zwischen den rotierenden Schaufeln und dem Turbinengehäuse als auch die Schwingungen, die bei den Umdrehungsgeschwindigkeiten der Schaufeln im Überschallbereich entstehen, noch präziser als bisher zu messen. Dazu haben Wissenschaftler um Prof. Jürgen Czarske, Professor für Mess- und Prüftechnik an der Fakultät Elektrotechnik und Informationstechnik der TU Dresden, einen neuartigen Lasersensor entwickelt, welcher die bekannten Vorteile der Lasertechnik benutzt, aber über Geschwindigkeiten hinaus auch Positionen bestimmen kann.

Mechanische und thermische Einflüsse führen zu einer ständigen minimalen Veränderung der Spaltweite im Mikrometerbereich, der jedoch für den funktionierenden Betrieb der Turbomaschine fortwährend kontrolliert werden muss und zudem wirtschaftliche Bedeutung besitzt. Eine so genau und gering wie möglich eingestellte Spaltweite, die in der Regel bei circa 0,5 mm liegt, kann bei dem hohen Energieverbrauch der Turbomaschinen schließlich zu enormen Kosteneinsparungen führen. Herkömmlich wird die Spaltweite durch so genannte kapazitive Messungen bestimmt, die über elektrische Sensoren am Gehäuse erfolgen. Da diese jedoch weniger genau und nur bei metallischen Stoffen anwendbar sind, ist das neue Lasermessverfahren vor allem für die Flugzeugindustrie interessant, die zunehmend auf Leichtbauweise setzt. So eignet sich der neuartige Lasersensor auch bei Schaufeln aus Keramik und Kunststoff (Faser-Verbundwerkstoff).


Die neue Technologie basiert auf dem bekannten Laser-Doppler-Verfahren, wobei die TU-Wissenschaftler einen Sensor entwickelt haben, der mit der elektronischen Signalverarbeitung von zwei Doppler-Frequenzen - statt wie bisher üblich einer - für zwei Laserwellenlängen (rotes und infrarotes Licht) die mathematische Errechnung der Spaltweite erlaubt. Dabei werden zwei Laserwellenlängen über ein Glasfaserkabel an einen Messkopf gesendet, der sich an der Außenwand der Turbine befindet. Von dort gelangen die Laserstrahlen über ein Fenster an die Schaufeln, die die Strahlen reflektieren. Die zurückgegebenen optischen Signale werden schließlich in elektrische Signale umgewandelt und mit einem Computer ausgewertet.

Der Modellversuch wurde an einer Turbine am Institut für Antriebstechnik des DLR in Köln durchgeführt. Die Forscher entwickelten für das neue Messprinzip einen optischen Messkopf, der so kompakt und robust ist, dass er die durch die Umfangsgeschwindigkeit der Turbine im Überschallbereich (586 m/s) bedingten Vibrationen unbeschadet übersteht. Der Messkopf wurde eigens an der Professur für Mess- und Prüftechnik gebaut und enthält ein integriertes Kühlsystem, sodass die Messungen auch bei Temperaturen bis 300C möglich sind. Während des Versuchs passierten die Schaufelblätter 22.000 Mal pro Sekunde die Messstelle. Der Spaltabstand konnte dabei auf 20m genau bestimmt werden - ein neuer Rekord! Bisher lag die Messunsicherheit bei 100m.

Neben der Änderung des Spaltabstands war die messgenaue Detektion der Schwingungen der Turbinenschaufeln für die Wissenschaftler ein ungeplantes, aber willkommenes Ergebnis. Dies war möglich, da jeder Schaufel ein genauer Messwert zugeordnet und somit eine zeitliche Veränderung der Position gemessen werden konnte. Professor Czarske führt den Erfolg der Forschungen auf die Synergieeffekte bei der Zusammenarbeit von Elektrotechnikern, Maschinenbauern und Physikern in seinem Team zurück.

Der bereits patentierte Lasersensor ermöglicht eine Online-Kontrolle der Spaltweite zwischen den rotierenden Schaufeln und dem Gehäuse von Turbomaschinen. Im Auftrag der Bosch GmbH wird er bereits bei der Entwicklung eines Elektromotors eingesetzt. Einen wichtigen Anwendungsbereich des Lasersensors stellen aber auch Werkzeugmaschinen dar, z.B. Dreh-, Fräs- und Schleifmaschinen, sodass während der Bearbeitung des Werkstücks sowohl Abtrag als auch absoluter Durchmesser bestimmt werden können. Für weitergehende Forschungen - so soll der Sensor weiter miniaturisiert und verfeinert werden, um schließlich in Massenproduktion überzugehen - ist das Team um Prof. Czarske gegenwärtig auf der Suche nach Industriepartnern.

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Berichte zu: Lasersensor Luft- und Raumfahrt Messkopf Sensor Turbomaschine

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Smarte Sensoren steuern Industrieprozesse von morgen
31.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten

20.09.2017 | Medizin Gesundheit

Autonomes Fahren wirft viele Fragen auf

20.09.2017 | Veranstaltungsnachrichten

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten