Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Eisfläche zum Hagelschauer

12.09.2005


Vorne ist deutlich eine Delle in der berechneten gelben Kohlenstoffschicht zu erkennen. Auf der hinteren blauen wurden 4 000 der roten Atome deponiert - das Loch füllt sich also und die Schicht wird insgesamt glatter.


Schichten aus diamantähnlichem Kohlenstoff sind sehr reibungsarm, weil superglatt. Daher appliziert man sie auf nahezu jede Festplatte und viele Maschinenteile. In einer Fachpublikation wird erstmals schlüssig geklärt, warum aufwachsende Schichten nicht rau werden.


Eine Werkstoffklasse, die in den vergangenen Jahren eine steile Karriere hinlegte, beruht auf ganz gewöhnlichem Kohlenstoff. Verantwortlich für diesen Erfolg sind verschiedene Verfahren, mit deren Hilfe das sechste Element des Periodensystems über Kohlenstoffelektroden oder aus gasförmigen Verbindungen im Plasma sehr kontrolliert auf festen Oberflächen abgeschieden werden kann. "Sehr kontrolliert" meint dabei die Kristallstruktur: Je nach Prozessbedingungen wächst eine amorphe, also atomar ungeordnete Schicht, kristalliner Graphit oder Diamant auf. Gerade die amorphen gewinnen zunehmend an Bedeutung, da bei ihnen die Schichthärte zwischen graphitisch und diamantähnlich (diamond like carbon, DLC) beliebig eingestellt werden kann. Ein weiterer Grund für die Karriere des amorphen Kohlenstoffs liegt in seiner Fähigkeit, ultraglatte und damit reibungsarme und verschleißfeste Schichten zu bilden. Damit hat DLC ein breites Spektrum von Anwendungen erobert. Es reicht von Beschichtungen für Computerfestplatten, kratzfesten Gläsern, reibenden Maschinenteilen bis zu widerstandsfähigen Bohrern, Fräsköpfen und anderen Werkzeugen.

Um solche und andere Schichten in ihrem Aufbau optimieren zu können, wollen Forscher verstehen, auf welche Weise sich die Atome auf der Oberfläche abscheiden. Ein Teilaspekt: Warum sind DLC-Schichten derartig glatt? Die bisherige mechanistische Vorstellung geht von einer lokalen Erwärmung der Schicht aus: Ein Atom trifft auf die Oberfläche und überträgt seine kinetische Energie auf die Nachbarn. Dies führt zu einem sehr kurzfristigen "Schmelzen", mit der Folge, dass kleine Erhebungen eingeebnet werden. "Wir konnten rechnerisch und im Experiment nachweisen, dass die Vorstellung ?heißes Bügeleisen auf Eisfläche? nicht haltbar ist", fasst Michael Moseler vom Fraunhofer-Institut für Werkstoffmechanik IWM seine Ergebnisse zusammen. "Der Vorgang gleicht viel eher einem ?erosiven Hagelschauer?. Wir haben damit einen universellen Glättungsmechanismus gefunden, der nicht nur bei Kohlenstoff, sondern auch bei amorphem Silizium und Metalloxiden auftritt. Diese Erkenntnisse sind so weitreichend, dass wir sie in der Septemberausgabe der Zeitschrift Science publiziert haben."


Eine wachsende DLC-Schicht gleicht einer nanoskopischen Schneelandschaft. Der Atomhagel verursacht Nanolawinen auf den Hängen. Dadurch werden die Berge nach und nach in die Täler erodiert, was letztendlich zur Glättung der Schicht führt. "Diese Erkenntnis ist sehr wichtig, um nanostrukturierte Oberflächen gezielt herstellen zu können", resümiert Moseler.

Marion Horn | idw
Weitere Informationen:
http://www.fraunhofer.de

Weitere Berichte zu: Atom Eisfläche Hagelschauer Kohlenstoff Schicht

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics