Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Eisfläche zum Hagelschauer

12.09.2005


Vorne ist deutlich eine Delle in der berechneten gelben Kohlenstoffschicht zu erkennen. Auf der hinteren blauen wurden 4 000 der roten Atome deponiert - das Loch füllt sich also und die Schicht wird insgesamt glatter.


Schichten aus diamantähnlichem Kohlenstoff sind sehr reibungsarm, weil superglatt. Daher appliziert man sie auf nahezu jede Festplatte und viele Maschinenteile. In einer Fachpublikation wird erstmals schlüssig geklärt, warum aufwachsende Schichten nicht rau werden.


Eine Werkstoffklasse, die in den vergangenen Jahren eine steile Karriere hinlegte, beruht auf ganz gewöhnlichem Kohlenstoff. Verantwortlich für diesen Erfolg sind verschiedene Verfahren, mit deren Hilfe das sechste Element des Periodensystems über Kohlenstoffelektroden oder aus gasförmigen Verbindungen im Plasma sehr kontrolliert auf festen Oberflächen abgeschieden werden kann. "Sehr kontrolliert" meint dabei die Kristallstruktur: Je nach Prozessbedingungen wächst eine amorphe, also atomar ungeordnete Schicht, kristalliner Graphit oder Diamant auf. Gerade die amorphen gewinnen zunehmend an Bedeutung, da bei ihnen die Schichthärte zwischen graphitisch und diamantähnlich (diamond like carbon, DLC) beliebig eingestellt werden kann. Ein weiterer Grund für die Karriere des amorphen Kohlenstoffs liegt in seiner Fähigkeit, ultraglatte und damit reibungsarme und verschleißfeste Schichten zu bilden. Damit hat DLC ein breites Spektrum von Anwendungen erobert. Es reicht von Beschichtungen für Computerfestplatten, kratzfesten Gläsern, reibenden Maschinenteilen bis zu widerstandsfähigen Bohrern, Fräsköpfen und anderen Werkzeugen.

Um solche und andere Schichten in ihrem Aufbau optimieren zu können, wollen Forscher verstehen, auf welche Weise sich die Atome auf der Oberfläche abscheiden. Ein Teilaspekt: Warum sind DLC-Schichten derartig glatt? Die bisherige mechanistische Vorstellung geht von einer lokalen Erwärmung der Schicht aus: Ein Atom trifft auf die Oberfläche und überträgt seine kinetische Energie auf die Nachbarn. Dies führt zu einem sehr kurzfristigen "Schmelzen", mit der Folge, dass kleine Erhebungen eingeebnet werden. "Wir konnten rechnerisch und im Experiment nachweisen, dass die Vorstellung ?heißes Bügeleisen auf Eisfläche? nicht haltbar ist", fasst Michael Moseler vom Fraunhofer-Institut für Werkstoffmechanik IWM seine Ergebnisse zusammen. "Der Vorgang gleicht viel eher einem ?erosiven Hagelschauer?. Wir haben damit einen universellen Glättungsmechanismus gefunden, der nicht nur bei Kohlenstoff, sondern auch bei amorphem Silizium und Metalloxiden auftritt. Diese Erkenntnisse sind so weitreichend, dass wir sie in der Septemberausgabe der Zeitschrift Science publiziert haben."


Eine wachsende DLC-Schicht gleicht einer nanoskopischen Schneelandschaft. Der Atomhagel verursacht Nanolawinen auf den Hängen. Dadurch werden die Berge nach und nach in die Täler erodiert, was letztendlich zur Glättung der Schicht führt. "Diese Erkenntnis ist sehr wichtig, um nanostrukturierte Oberflächen gezielt herstellen zu können", resümiert Moseler.

Marion Horn | idw
Weitere Informationen:
http://www.fraunhofer.de

Weitere Berichte zu: Atom Eisfläche Hagelschauer Kohlenstoff Schicht

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE