Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf molekularer Achse in die Nanomechanik

02.09.2005


Forscher am Stuttgarter Max-Planck-Institut für Festkörperforschung nutzen Nanoröhrchen aus Kohlenstoff als Torsionsfedern


Abb. 1: Schema eines auf einem einwandigen Kohlenstoff-Nanoröhrchen aufgehängten beweglichen Metallblocks. Wird der Metallblock gedreht, verformt sich das Nanoröhrchen und funktioniert als Torsionsfeder. Bild: Max-Planck-Institut für Festkörperforschung


Abb. 2: Transmissionselektronenmikroskopische Aufnahme eines beweglich aufgehängten Objekts. Eine allein durch die thermische Energie angeregte Torsionsschwingung ist als unscharfe Kante zu erkennen. Die stark vergrößerte Abbildung rechts oben zeigt das rohrförmige Molekül, auf dem der Metallblock befestigt ist. Es hat einen Durchmesser von nur 1,5 Nanometer und ist somit kleiner als die Doppelhelix der DNA. Der Maßstab entspricht 200 Nanometer und - im vergrößerten Ausschnitt - 2 Nanometer. Bild: Max-Planck-Institut für Festkörperforschung



In den vergangenen Jahrzehnten sind nach elektronischen auch mechanische Bauteile auf immer kleinere Dimensionen geschrumpft: Mittels lithografischer Verfahren aus der Mikroelektronik ließen sich winzige mechanische Komponenten und schließlich mikroelektromechanische Systeme herstellen. Einen neuen Grenzstein in Sachen Miniaturisierung haben jetzt Wissenschaftler am Stuttgarter Max-Planck-Institut für Festkörperforschung gesetzt. Ihnen gelang es, mikroskopisch kleine "Paddel" aus Metall schwenkbar auf Kohlenstoff-Nanoröhrchen von nur eineinhalb millionstel Millimeter Durchmesser zu lagern (Science, 2. September 2005).



Kohlenstoff-Nanoröhrchen sind langgestreckte Moleküle mit außerordentlichen elektrischen und mechanischen Eigenschaften; insbesondere einwandige Nanoröhrchen bieten sich für elektronische Anwendungen an. Ihr Durchmesser beträgt ein bis drei Nanometer (millionstel Millimeter), etwa vergleichbar dem Durchmesser der DNA-Doppelhelix. Die Stuttgarter Forscher haben untersucht, ob sich mit einwandigen Nanoröhrchen auch mechanische und elektromechanische Komponenten mit winzigen Abmessungen herstellen lassen. Dazu hängten sie lithografisch erzeugte Metallblöcke an einem einzelnen einwandigen Kohlenstoff-Nanoröhrchen auf. Diese Metallblöcke sind unter einem optischen Mikroskop sichtbar, werden aber durch ein fast tausendmal kleineres einzelnes Molekül getragen. Im optischen Mikroskop - wie auch bei kleinerer Vergrößerung im Elektronenmikroskop - sieht man daher ein scheinbar frei schwebendes Objekt. Erst bei höherer Vergrößerung im Transmisions-Elektronenmikroskop lässt sich das Molekül erkennen, das die Struktur trägt.

Das aufgehängte Objekt kann durch ein elektrisches Feld bewegt werden. Dabei dient das Nanoröhrchen als molekulare Achse, die durch Torsion deformiert wird. Die Struktur wird dabei von nur wenigen molekularen Bindungen getragen: Auf einem Querschnitt durch eine Kohlenstoff-Nanoröhre liegen nur etwa 20 Kohlenstoff-Bindungen; die genaue Struktur der Röhrchen bestimmten die Wissenschaftler durch Elektronenbeugung.

Derartige Bauteile könnten als Funktionselemente in nanoelektromechanischen Systemen dienen - etwa als winzige bewegliche Spiegel in optischen Anwendungen, beispielsweise für die Telekommunikation. Ebenso ließen sie sich als Sensoren verwenden, da bereits sehr kleine Kräfte eine Drehung des Metallblocks und damit auch eine Verformung der Nanoröhrchen bewirken. Max-Planck-Forscher Jannik Meyer erwartet, dass sich die elektrische Leitfähigkeit der Nanoröhrchen stark mit deren Verformung ändert - dass also diese Verformung einfach elektrisch detektierbar wäre. So beobachteten die Wissenschaftler, dass bereits die thermische Energie bei Raumtemperatur eine deutlich sichtbare Vibration des Metallblocks hervorruft, was die Empfindlichkeit dieses Systems zeigt.

Meyer und seine Kollegen halten auch kompliziertere mechanische Systeme für denkbar, in denen mehrere frei aufgehängte Objekte untereinander über Nanoröhrchen verbunden sind. Zunächst allerdings geht es darum, das Verhalten von Kohlenstoff-Nanoröhrchen unter Verformung genau zu analysieren. Und so dient das Stuttgarter "Nanopaddel" in jedem Fall als wertvolles Instrument der Grundlagenforschung.

Originalveröffentlichung:

Jannik C. Meyer, Matthieu Paillet, Siegmar Roth
Single-Molecule Torsional Pendulum
Science, 2. September 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise