Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf drei Beinen schnell durch den Raum

12.08.2005


Je nach Bauweise können Werkzeugmaschinen ihre Bewegungen nacheinander oder gleichzeitig durchführen. Parallelkinematiken sind aufwändiger zu steuern, aber schneller und präziser. Auf der Messe EMO in Hannover stellen Ingenieure ihren "Tripod" vor.


Wesentliche Komponenten des Tripods sind Arbeitsplattform, Kugelgelenke und Motorspindel. Die Streben mit den Linearmotoren sind durch Faltenbälge vor Verschmutzung geschützt.
© Fraunhofer IWU



"Seriell" und "parallel" sind Begriffe, die am ehesten von Schnittstellen am PC bekannt sind. Seriell heißt, Vorgänge wie das Übertragen von Daten nacheinander ablaufen zu lassen und parallel eben gleichzeitig und nebeneinander. Ein serieller Aufbau von Bearbeitungsmaschinen bedeutet, dass eine bewegliche Baugruppe auf der nächsten sitzt - wie etwa bei gewöhnlichen Industrierobotern. Dieser Bauweise oder Kinematik sind in Beschleunigung und Ruck enge Grenzen gesetzt, die sich nur mit hohem technischen Aufwand und entsprechenden Kosten überwinden lassen.



Einen Ausweg bieten gänzlich andere Bauweisen: Parallele Kinematiken. Ein Beispiel dafür ist der Tripod, den Ingenieure vom Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU in Chemnitz entwickelt und gebaut haben: Bei dieser Werkzeugmaschine sind drei Streben über Drehgelenke an einer festen Gestellplattform befestigt. Am anderen Ende der drei "Beine" befindet sich die Bearbeitungsplattform an Kugelgelenken. Sie wiederum trägt die Motorspindel, die etwa ein zerspanendes Werkzeug aufnimmt und antreibt. Mit Linearmotoren kann die Länge der Streben synchron verändert werden. Dadurch lässt sich der Bearbeitungskopf um ± 30 Grad kippen und um bis zu 30 Zentimeter aus- und einfahren. Für die Steuerung bedeutet dies eine Transformation von orthogonalen Werkstück- in parallele Strebenkoordinaten. In Verbindung mit zwei weiteren Linearachsen ist somit eine simultane 5-Achsbearbeitung möglich.

Besonders im Werkzeug- und Formenbau, aber auch in der Flugzeugindustrie wünscht man sich hohe effektive Bearbeitungsgeschwindigkeiten gepaart mit hoher Präzision - und das auch noch bei komplex geformten Teilen. Da in der parallelen Bauweise weniger Masse bewegt wird, können neue Positionen im Raum schneller angefahren werden. Lasten und Kräfte der Plattform wirken immer auf alle Baugruppen. Wegen der geringeren Verformung kommt dies letztlich der Positioniergenauigkeit des Werkzeugs zugute. "Das neue Konzept dieser Parallelkinematik haben wir insbesondere für die Finish-Bearbeitung konzipiert", resümiert IWU-Abteilungsleiter Steffen Nestmann. "Die Bearbeitungszeiten für komplizierte Teile mit stark gekrümmten Freiformflächen betragen gegenüber konventionellen 5-Achs-Maschinen nur etwa 70 Prozent." Nestmann und seine Mitarbeiter präsentieren ihren Tripod und sein Konstruktionsprinzip auf der EMO in Halle 12. Die "Weltausstellung der Fertigungstechnik" findet vom 14. bis 21. September in Hannover statt.

Ansprechpartner:
Dr. Steffen Nestmann
Telefon: 03 71 / 53 97-4 41, Fax: -64 41
steffen.nestmann@iwu.fraunhofer.de

Dipl.-Betriebswirt Janko Mauksch
Telefon: 03 71 / 53 97-3 35, Fax: -63 35
janko.mauksch@iwu.fraunhofer.de

Dr. Johannes Ehrlenspiel | idw
Weitere Informationen:
http://www.iwu.fraunhofer.de
http://www.fraunhofer.de/fhg/fair/2005/EMO2005.jsp

Weitere Berichte zu: Baugruppe Kinematik Werkzeug Werkzeugmaschine

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics