Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoskalpell - Genauigkeit wird weiter gesteigert

08.08.2005


Freilegen einer kritischen Stelle in einem mikroelektronischen Schaltkreis mit fokussierender Ionenstrahltechnik.


Die Nachfrage ist groß: Fraunhofer IWM betreibt im Industrieauftrag Fehleranalyse und Verfahrensentwicklung - Zusammenarbeit mit Carl Zeiss zur Anlagenentwicklung


Wenn mikroelektronische Bauelemente versagen, dann steckt der Teufel im nur nanometerkleinen Detail. Den Fehler zu finden, seine Ursachen festzustellen und den Herstellern Änderungen vorzuschlagen, ist eine Kernaufgabe des Fraunhofer-Instituts für Werkstoffmechanik IWM in Halle.

Gemeinsam mit der Firma Carl Zeiss entwickelt das Institut dafür eine Methode weiter, die fokussierende Ionenstrahltechnik, kombiniert mit einem Rasterelektronenmikroskop.


Wegen des großen Bedarfs der Industrie plant das Fraunhofer IWM jetzt, die Kapazitäten erneut zu erweitern.

Ob Aluminiumleitbahnen oder Kupfertechnologie, neue Materialien und Verbindungstechniken: Die Entwicklung in der Mikroelektronik ist rasant. Doch wer in der Dimension von Millionstel Zentimetern neue Bauelemente entwirft und produziert, riskiert mindestens in der Entwicklungsphase Fehler. "Diesen Fehler im komplexen Aufbau der Bauelemente zu finden, stellt höchste Ansprüche an die Analysetechnik", erläutert Frank Altmann. Der Leiter des Bereichs Fehlerdiagnostik am Fraunhofer IWM und seine zehn Mitarbeiter suchen in Mikrochips mit bis zu mehreren 10 Millionen einzelner Transistoren nach Ursachen für das Versagen mikroelektronischer und mikromechanischer Bauteile. Wer diese Bauelemente analysieren will, muss die Fehlerstellen zunächst in komplexen Schichtstapeln unterhalb der Oberfläche finden und sie dann für die Analyse - beispielsweise mit dem Transmissionselektronenmikroskop - im Querschnitt frei legen. Die dafür notwendige Genauigkeit liegt in der Größenordnung von ca. 100 Nanometer, also einem Tausendstel eines Haardurchmessers. Wie also an die Fehlerstelle kommen, ohne dabei den vielleicht entscheidenden Teil des kleinen, oft hochkomplexen Bauteils zu zerstören?

"Dafür ist heute und auch in den kommenden Jahren die fokussierende Ionenstrahltechnik, auf Englisch "focused ion beam" (kurz FIB) das Mittel der Wahl", erläutert Frank Altmann. Sie erlaube es, Proben mit Nanometer-Präzision zu präparieren und so an die vermutete Fehlerstelle überhaupt heranzukommen. "Die dafür erforderliche Arbeit ähnelt der eines Chirurgen mit einem Skalpell, aber mit mehr als 10000-fach höherer Genauigkeit".

Im Fraunhofer IWM in Halle sind solche FIB-Anlagen bereits seit 1996 im Einsatz. Besonders die zweite Anlage, die seit 2002 zur Verfügung steht, birgt für die Detektive in der Nanometerwelt der Mikroelektronik neue Perspektiven. Die so genannte Zweistrahlanlage kombiniert die Präzisionsbearbeitung mittels Ionenstrahltechnik mit einem Rasterelektronenmikroskop für die hochaufgelöste Abbildung.

"In Echtzeit können wir so beobachten, wie wir Material abtragen, den Prozess genau steuern und die Probe so noch präziser herstellen", betont Frank Altmann. Das sei nur möglich, weil diese FIB-Anlage der Firma Carl Zeiss die so genannte CrossBeam Technologie nutzt und somit simultan mit Ionenstrahlen für die Bearbeitung und Elektronenstrahlen für die Abbildung arbeiten könne.

Erst diese technische Neuerung schaffe die Basis für neue Analysemethoden, meint Frank Altmann. Die aber sind die Voraussetzung dafür, dass der Grund für das Versagen auch in Zukunft an den noch kleiner werdenden Strukturen mikroelektronischer Bauelemente gefunden werden kann. Dazu gehören Risse im Material oder auch fehlerhafte Verbindungen. Und die wiederum können von minimalen Abweichungen im komplexen Herstellungsprozess, wie Schmutzpartikeln in einer Maschine, einem minimalen Versatz der Masken, mit denen die Chips schrittweise belichtet und strukturiert werden, oder vom so genannten Temperaturregime im Herstellungsprozess verursacht werden.

Viele große Mikroelektronikfirmen hätten mittlerweile eigene FIB-Anlagen, erläutert Frank Altmann. Dem Fraunhofer IWM gehe die Arbeit trotzdem nicht aus. Zum Einen würden die mittelständischen Firmen bedient. Zum Anderen stützten sich auch die großen Konzerne bei komplizierten Problemen gern auf die Kompetenz und die breite und langjährige Erfahrung der Fraunhofer-Mitarbeiter in Halle. Und solche Probleme, betont Altmann, entstünden immer wieder, weil immer mehr Funktionen auf immer kleinerem Raum integriert werden.

Die große Nachfrage hat dazu geführt, dass Altmanns Gruppe heute doppelt so viele Mitarbeiter beschäftigt wie vor vier Jahren. Zum Jahresende 2005 soll nun eine dritte FIB-Anlage die Kapazitäten und die technischen Möglichkeiten weiter ausbauen.

Neben den Dienstleistungen der Analyse und Verfahrensentwicklung für die industriellen Partner aus der Mikroelektronik arbeitet das Fraunhofer IWM deshalb gemeinsam mit Carl Zeiss auch an der Weiterentwicklung der Zweistrahltechnik selbst. "Schließlich muss die Analysetechnik Schritt halten mit den technologischen Entwicklungen auf Waferebene, und das ist eine große Herausforderung", sagt Altmann. Bis Ende 2006 bringen die Fraunhofer-Mitarbeiter ihre Expertise so mit doppeltem Nutzen ein. Die Analysen dienen zur Technologieoptimierung der Mikroelektronik-Produkte genauso wie zur Optimierung der Analysetechnik.

Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie