Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoskalpell - Genauigkeit wird weiter gesteigert

08.08.2005


Freilegen einer kritischen Stelle in einem mikroelektronischen Schaltkreis mit fokussierender Ionenstrahltechnik.


Die Nachfrage ist groß: Fraunhofer IWM betreibt im Industrieauftrag Fehleranalyse und Verfahrensentwicklung - Zusammenarbeit mit Carl Zeiss zur Anlagenentwicklung


Wenn mikroelektronische Bauelemente versagen, dann steckt der Teufel im nur nanometerkleinen Detail. Den Fehler zu finden, seine Ursachen festzustellen und den Herstellern Änderungen vorzuschlagen, ist eine Kernaufgabe des Fraunhofer-Instituts für Werkstoffmechanik IWM in Halle.

Gemeinsam mit der Firma Carl Zeiss entwickelt das Institut dafür eine Methode weiter, die fokussierende Ionenstrahltechnik, kombiniert mit einem Rasterelektronenmikroskop.


Wegen des großen Bedarfs der Industrie plant das Fraunhofer IWM jetzt, die Kapazitäten erneut zu erweitern.

Ob Aluminiumleitbahnen oder Kupfertechnologie, neue Materialien und Verbindungstechniken: Die Entwicklung in der Mikroelektronik ist rasant. Doch wer in der Dimension von Millionstel Zentimetern neue Bauelemente entwirft und produziert, riskiert mindestens in der Entwicklungsphase Fehler. "Diesen Fehler im komplexen Aufbau der Bauelemente zu finden, stellt höchste Ansprüche an die Analysetechnik", erläutert Frank Altmann. Der Leiter des Bereichs Fehlerdiagnostik am Fraunhofer IWM und seine zehn Mitarbeiter suchen in Mikrochips mit bis zu mehreren 10 Millionen einzelner Transistoren nach Ursachen für das Versagen mikroelektronischer und mikromechanischer Bauteile. Wer diese Bauelemente analysieren will, muss die Fehlerstellen zunächst in komplexen Schichtstapeln unterhalb der Oberfläche finden und sie dann für die Analyse - beispielsweise mit dem Transmissionselektronenmikroskop - im Querschnitt frei legen. Die dafür notwendige Genauigkeit liegt in der Größenordnung von ca. 100 Nanometer, also einem Tausendstel eines Haardurchmessers. Wie also an die Fehlerstelle kommen, ohne dabei den vielleicht entscheidenden Teil des kleinen, oft hochkomplexen Bauteils zu zerstören?

"Dafür ist heute und auch in den kommenden Jahren die fokussierende Ionenstrahltechnik, auf Englisch "focused ion beam" (kurz FIB) das Mittel der Wahl", erläutert Frank Altmann. Sie erlaube es, Proben mit Nanometer-Präzision zu präparieren und so an die vermutete Fehlerstelle überhaupt heranzukommen. "Die dafür erforderliche Arbeit ähnelt der eines Chirurgen mit einem Skalpell, aber mit mehr als 10000-fach höherer Genauigkeit".

Im Fraunhofer IWM in Halle sind solche FIB-Anlagen bereits seit 1996 im Einsatz. Besonders die zweite Anlage, die seit 2002 zur Verfügung steht, birgt für die Detektive in der Nanometerwelt der Mikroelektronik neue Perspektiven. Die so genannte Zweistrahlanlage kombiniert die Präzisionsbearbeitung mittels Ionenstrahltechnik mit einem Rasterelektronenmikroskop für die hochaufgelöste Abbildung.

"In Echtzeit können wir so beobachten, wie wir Material abtragen, den Prozess genau steuern und die Probe so noch präziser herstellen", betont Frank Altmann. Das sei nur möglich, weil diese FIB-Anlage der Firma Carl Zeiss die so genannte CrossBeam Technologie nutzt und somit simultan mit Ionenstrahlen für die Bearbeitung und Elektronenstrahlen für die Abbildung arbeiten könne.

Erst diese technische Neuerung schaffe die Basis für neue Analysemethoden, meint Frank Altmann. Die aber sind die Voraussetzung dafür, dass der Grund für das Versagen auch in Zukunft an den noch kleiner werdenden Strukturen mikroelektronischer Bauelemente gefunden werden kann. Dazu gehören Risse im Material oder auch fehlerhafte Verbindungen. Und die wiederum können von minimalen Abweichungen im komplexen Herstellungsprozess, wie Schmutzpartikeln in einer Maschine, einem minimalen Versatz der Masken, mit denen die Chips schrittweise belichtet und strukturiert werden, oder vom so genannten Temperaturregime im Herstellungsprozess verursacht werden.

Viele große Mikroelektronikfirmen hätten mittlerweile eigene FIB-Anlagen, erläutert Frank Altmann. Dem Fraunhofer IWM gehe die Arbeit trotzdem nicht aus. Zum Einen würden die mittelständischen Firmen bedient. Zum Anderen stützten sich auch die großen Konzerne bei komplizierten Problemen gern auf die Kompetenz und die breite und langjährige Erfahrung der Fraunhofer-Mitarbeiter in Halle. Und solche Probleme, betont Altmann, entstünden immer wieder, weil immer mehr Funktionen auf immer kleinerem Raum integriert werden.

Die große Nachfrage hat dazu geführt, dass Altmanns Gruppe heute doppelt so viele Mitarbeiter beschäftigt wie vor vier Jahren. Zum Jahresende 2005 soll nun eine dritte FIB-Anlage die Kapazitäten und die technischen Möglichkeiten weiter ausbauen.

Neben den Dienstleistungen der Analyse und Verfahrensentwicklung für die industriellen Partner aus der Mikroelektronik arbeitet das Fraunhofer IWM deshalb gemeinsam mit Carl Zeiss auch an der Weiterentwicklung der Zweistrahltechnik selbst. "Schließlich muss die Analysetechnik Schritt halten mit den technologischen Entwicklungen auf Waferebene, und das ist eine große Herausforderung", sagt Altmann. Bis Ende 2006 bringen die Fraunhofer-Mitarbeiter ihre Expertise so mit doppeltem Nutzen ein. Die Analysen dienen zur Technologieoptimierung der Mikroelektronik-Produkte genauso wie zur Optimierung der Analysetechnik.

Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie