Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haarfeine Löcher bohren

08.06.2005


Das rotierende Prisma im Inneren der Lichtbohrmaschine lenkt den Laserstrahl um einen variablen, kleinen Winkel ab. © Fraunhofer ILT


Spinndüsen in der Textilindustrie sind nur ein Beispiel für sehr dünne Löcher in Metallen. Laser sind für solche Aufgaben mechanischen Verfahren überlegen. Auf der Messe LASER zeigen Forscher, wie Löcher mit exotischen Geometrien präzise gebohrt werden können.


Gewöhnliche zylindrische Löcher zu bohren, ist im Haushalt wie in der Industrie kein sehr großes Problem. Größer wird es, wenn das Loch sehr klein sein soll, denn Bohrer von der Stärke eines Haares - also mit rund 70 Mikrometern Durchmesser - wären nicht gerade stabil. Zur Fertigung von Ziehsteinen für dünne Drähte, Spinndüsen oder Führungen für Fasern greifen Fachleute daher auf die Funkenerosion oder auf Laser zurück. Für allerfeinste Löcher hat sich auch in der Mikroelektronik oder beim Bau von Motorteilen eine Familie von Verfahren etabliert, die mit gebündelten Lichtstrahlen berührungslos und daher verschleißfrei arbeitet. Besonders schwierig wird es, wenn die Bohrung konisch, also kegelförmig sein muss und sich ihr Querschnitt in Bohrrichtung aufweitet. Solche Geometrien werden beispielsweise bei Düseneinsätzen benötigt, deren Rückseiten unzugänglich sind. Ein Verfahren, das selbst derart geformte Löcher bohrt, stellen Forscher vom Fraunhofer-Institut für Lasertechnik auf der LASER in Halle B3 am Stand 145 vor. Die Fachmesse für optische Technologien findet vom 13. bis 16. Juni in München statt.

"Mit der Wendelbohroptik können wir kreisrunde Bohrungen mit Durchmessern von bis zu 30 Mikrometern erzeugen", sagt Welf Wawers von der ILT-Abteilung Mikrostrukturierung. "Bei konischen Bohrungen kann der Durchmesser des Lochs am Austritt doppelt so groß sein wie am Eintritt." Die Forscher haben bis zu zwei Millimeter starke Werkzeug- und Edelstähle bearbeitet. In weniger als einer viertel Minute schießt der gepulste Laser ein Loch von 50 Mikrometern Durchmesser durch die Metallplatten. Oft ist es wichtig, dass die Wände des Bohrkanals besonders glatt und regelmäßig sind. Dies ist ein weiterer Vorteil des Wendelbohrens gegenüber herkömmlichen Laserbohrverfahren.


Doch wie kann der Apparat überhaupt Löcher bohren, die sich nach hinten aufweiten? Der Laserstrahl trifft unter einem verstellbaren Winkel auf ein Prisma und unter einem anderen wieder aus. So strahlt er ebenfalls unter einem variablen Winkel auf das Werkstück. Wie auf einer Wendeltreppe, die nach unten weiter wird, arbeitet sich der doppelkegelförmig rotierende Strahl in die Tiefe des Materials. Die besondere Geometrie des Prismas bewirkt zudem, dass der Laserstrahl mit der doppelten Geschwindigkeit des Elektromotors bis zu 660-mal pro Sekunde in sich rotiert. Dies gleicht eine inhomogene Intensitätsverteilung auf der bestrahlten Fläche aus, was zu einer besonders hohen Güte des Bohrlochs führt.

Dr. Johannes Ehrlenspiel | idw
Weitere Informationen:
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/default.php?web=1&id=100366&lan=ger&dat=2

Weitere Berichte zu: Bohrung Durchmesser Geometrie Laser Mikrometer

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics