Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Kunst vom Biegen und Beulen mit Hitze

12.04.2005


Forscher aus aller Welt zum Informationsaustausch in Bremen / IWOTE ’05 - Erstmals Internationaler Workshop zum thermischen Umformen im BIAS



Eben und glatt muss der Boden des Schiffdecks sein, doch nachdem die Schweißer in der Werft ihre Arbeit getan haben, gleicht er eher einer Hügellandschaft. Beule reiht sich an Beule. Durch die Hitze beim Schweißen haben sich die ehemals glatten Stahlplatten verformt. Ebenfalls durch Hitze lassen sich diese Dellen wieder glätten. Fachleute nennen es thermisches Umformen. Auch Werkstücke, die heute zum Beispiel noch mit Pressen in eine andere Form gebracht werden, lassen sich durch Wärmeeinwirkung umformen. Wichtig ist hier das Wissen darum, welche Wärmequelle wie, wann und an welchen Stellen über das Bauteil bewegt werden muss. Mit Problemen dieser Art beschäftigen sich Forschergruppen rund um den Globus. Nun kommen sie in Bremen zu einem Informationsaustausch zusammen: Am 13. und 14. April 2005 veranstaltet das Bremer Institut für angewandte Strahltechnik (BIAS) den ersten internationalen Workshop zum thermischen Umformen, die IWOTE’05 (1st International Workshop on Thermal Forming).

... mehr zu:
»BIAS »Bauteil »Hitze »Umformen


20 Vorträge in zwei Tagen - Experten aus aller Welt präsentieren ihre neuesten Erkenntnisse zum Verständnis der Umformmechanismen, zur Vorhersage der Verformungen und zur Optimierung der Wärmeführung, um die gewünschten Geometrien zu erreichen. Mit dem Fokus auf industrielle Anwendungen diskutieren sie Potenziale und offene Fragen. Während des Workshops haben die Teilnehmer auch die Gelegenheit, eigene Fragen aus Anwendersicht einzubringen und sie mit den Forschern und Entwicklern zu erörtern.

"Die konventionelle Umformtechnik mit Maschinen hat Probleme mit sehr große Bauteilen wie zum Beispiel Schiffsrümpfen und auch mit sehr kleinen Bauteilen aus der Mikrotechnik wie zum Beispiel Leseköpfe in CD-Playern", sagt Professor Frank Vollertsen, der Direktor des BIAS. Seit Jahren forscht er auf diesem Gebiet und gilt hier als einer der renommiertesten Experten. Im thermischen Umformen sieht er ein sehr hohes Potenzial für die industrielle Fertigung: "Diese Technik wird zwar in kleinem Umfang schon genutzt, ist aber noch enorm ausbaufähig."

"Am weitesten verbreitet ist das thermische Umformen im Schiffbau", sagt Dipl.-Ing. Thomas Seefeld. Einsatzmöglichkeiten biete auch der Flugzeugbau, aber erst vereinzelt werde die Technik bislang im Mikrobereich angewandt, meint der BIAS-Wissenschaftler. "Und dort liegt der Ausgangspunkt für die Entwicklung des thermischen Umformens zu einem flexiblen und automatisierten Fertigungsverfahren für die Einzel- und Massenfertigung." Das Ziel: Senken der Fertigungskosten. Auch um weitere Anwendungsbereiche für das thermische Umformen zu erschließen, bedürfe es weiter eines wachsenden Prozessverständnisses, sagt der Laser-Spezialist. So entwickelt er zum Beispiel Simulationen, um damit die richtigen Bearbeitungsstrategien zu finden. Daraus ergeben sich dann auch Antworten auf die Frage, welche Wärmequelle wie, wann und an welchen Stellen über das Bauteil bewegt werden muss.

Weitere Informationen:
Prof. Dr.-Ing. Frank Vollertsen (Direktor des BIAS)
Tel: 0421 218-50 04
Dipl.-Ing. Thomas Seefeld
Tel: 0421 218-50 40
E-Mail: iwote05@bias.de

Angelika Rockel | idw
Weitere Informationen:
http://www.bias.de

Weitere Berichte zu: BIAS Bauteil Hitze Umformen

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics