Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Sonderforschungsbereich eingerichtet: Humanoide Roboter werden Partner des Menschen

02.07.2001


An der Universität Karlsruhe (TH) ist zum 1. Juli 2001 ein neuer Sonderforschungsbereich (SFB) der Deutschen Forschungsgemeinschaft (DFG) eingerichtet worden. Nach intensiven Vorbereitungen ist es gelungen, den SFB 588 "Humanoide Roboter - Lernende und kooperierende multimodale Roboter" zu etablieren. Ziel dieses Projektes ist es, Konzepte, Methoden und konkrete mechatronische Komponenten für einen humanoiden Roboter zu entwickeln, der seinen Arbeitsbereich mit dem Menschen teilt. Mit Hilfe des eigens zu entwickelnden "teilanthropomorphen Robotersystems" soll der Schritt aus dem Roboterkäfig und damit der direkte Kontakt zum Menschen realisiert werden.


Damit das Robotersystem "humanoid" wird, muss es über viele komplexe Fähigkeiten und Eigenschaften verfügen; eine zumindest menschenähnliche Gestalt ist von Vorteil. Dafür soll ein mobiles Zweiarmsystem mit fünffingrigen Händen, einem flexiblen Torso sowie einem Sensorkopf mit visuellen und akustischen Sensoren entwickelt werden. Außerdem soll das Bewegungssystem und damit das Verhalten des Roboters auf menschenähnliche Bewegungen zugeschnitten werden.

Daneben spielt Multimodalität eine wichtige Rolle: Die für den Menschen intuitiven Kommunikationskanäle wie Sprache, Gestik und Haptik (physischer Kontakt Mensch-Roboter) sollen für die direkte Kommandierung oder Belehrung des Robotersystems genutzt werden.


Bei der Kooperation zwischen Mensch und Roboter - zum Beispiel bei der gemeinsamen Manipulation von Gegenständen - ist es für den Roboter wichtig, die menschliche Absicht zu erkennen, sich an bereits gemeinsam durchgeführte Handlungen zu erinnern und dieses Wissen im Einzelfall korrekt anzuwenden. Da die Sicherheit für den Menschen eine ganz wesentliche Rolle spielt, wird mit großem Aufwand auch dieser Aspekt der Mensch-Maschine-Kooperation bearbeitet.

Als herausragende Eigenschaft ist die Lernfähigkeit des Systems hervorzuheben, da hierdurch das System an neue, bisher unbekannte Aufgaben herangeführt werden kann; neue Begriffe und Gegenstände, sogar neue Bewegungen werden mit Hilfe des Menschen erlernbar und können von dem Benutzer interaktiv korrigiert werden.

An diesem der Fakultät für Informatik zugeordneten Sonderforschungsbereich sind mehr als 40 Wissenschaftler und elf Forschungsinstitute beteiligt. Diese gehören den Fakultäten für Informatik, für Elektrotechnik und Informationstechnik und für Maschinenbau, dem Institut für Sport und Sportwissenschaften sowie dem Forschungszentrum Karlsruhe, dem Forschungszentrum Informatik und der Fraunhofergesellschaft (IITB) an. Sprecher für die erste dreijährige Projektphase ist Professor Dr. Rüdiger Dillmann vom Institut für Prozessrechentechnik, Automation und Robotik. Der Sonderforschungsbereich ist auf zwölf Jahre ausgelegt.

Mit den "Humanoiden Robotern" sind insgesamt acht Sonderforschungsbereiche an der Universität Karlsruhe angesiedelt; an weiteren fünf SFBs ist die Fridericiana beteiligt.

Weitere Informationen:
Professor Dr. Rüdiger Dillmann
Institut für Prozessrechentechnik, Automation und Robotik
Tel.: (0721) 608-3846

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.uni-karlsruhe.de/~presse/Pressestelle/pi060.html

Weitere Berichte zu: Automation Humanoide Roboter Robotersystem

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics