Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verfahren zur Verbindung einzelner Moleküle

05.10.2004


Angetrieben von ständig kleiner werdenden elektronischen Bauteilen wie Transistoren, hat sich die elektronische Technologie in den vergangenen Jahrzehnten rasant entwickelt. Die neuesten Fortschritte in der Molekularelektronik lösen verlockende Aussichten für die weitere Miniaturisierung bis hin zur Nanoskala aus.



Die Nachfrage nach immer besseren, schnelleren und kleineren elektronischen Geräten hat zur Weiterentwicklung der Elektronik zur Mikroelektronik geführt. Dabei kommen integrierte Schaltkreise zum Einsatz, bei denen auf wenigen Quadratzentimtern Millionen von Transistoren untergebracht sind. Die Gesetze der Quantenmechanik erlangen jedoch bei immer geringerem Platzangebot eine immer größere Bedeutung und haben Auswirkungen auf die Einschränkung bei der Materialauswahl und den Herstellungsmethoden. Die Gefahr der Überhitzung und von Überschneidungen zwischen den einzelnen elektronischen Komponenten haben zu einer festen Mindestgröße von Halbleitertransistoren geführt.



Die Mikroelektronik hat sich mittlerweile zur Nanoelektronik weiterentwickelt. Dabei entstanden Geräte, deren Konstruktion die quantenmechanischen Effekte auf der Nanometerskala zu ihrem Vorteil nutzen. In dieser Richtung liegt der Forschungsschwerpunkt auf der Verwendung organischer Materialien, die dieselben Funktionen wie herkömmliche Halbleiter erfüllen. Im Prinzip fungieren kovalent verbundene Moleküle als Verbindungsdrähte, durch die die Elektronen problemlos von einem Ende zum anderen fließen können. Der Elektronenfluss ist in hohem Maße abhängig von der Art der Moleküle, ihrer Geometrie und deren Orbital-Anordnung.

In einem Molekül ist jedes Orbital ein einzelnes, eigenständiges Energieniveau für die Elektronen, die dazu neigen, sich von höheren zu niedrigeren Energieniveus zu bewegen. Ein normaler leerer, niederenergetischer Elektronen-Orbital wird auch als Pi-Orbital bezeichnet. Die Konfiguration, bei der die Elektronen von einer Molekül-Komponente zur einer anderen übergehen, heißt konjugiert und der letzte Moleküldraht wird oft als Pi-konjugiertes System bezeichnet.

Im Rahmen des NANOTCAD-Projekts sind die aus einzelnen Phenylen-basierten Molekülen bestehenden zweipoligen winzigen Geräte die kleinsten Pi-konjugierten Gerätekomponenten. Diese werden unter Verwendung von zwei verschiedenen Stromübergangsmethoden hergestellt. Bei der ersten Methode wird der Übergang der Moleküle zwischen den zwei Drähten kreuzgeometrisch hergestellt, während bei der zweiten die Moleküle durch kontrollierte Elektromigration in Nanogaps platziert werden. Bei beiden Methoden werden Gold/Palladium-Nanodrähte als wesentliche Bestandteile verwendet, die in einheitlichen Drähten mit festgelegten Abmessungen und einer sauberen Oberfläche resultieren. In den entstehenden molekularen Geräten sind die von den Molekülen überbrückten Lücken zwischen den zwei Metallelektroden bei beiden Methoden kleiner als 1 Nanometer (1nm).

Da die Galvanotechnik-Methode mit verschiedenen Arten mono- und bifunktioneller Moleküle arbeitet, besitzt sie bedeutendes Potential für weitere damit verbundenen Anwendungen, z.B. auf Crossbar-Struktur basierte Speicherfelder.

Dr. Marko Burghard | ctm
Weitere Informationen:
http://www.fkf.mpg.de

Weitere Berichte zu: Elektron Mikroelektronik Molekül Transistor

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit