Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verfahren zur Verbindung einzelner Moleküle

05.10.2004


Angetrieben von ständig kleiner werdenden elektronischen Bauteilen wie Transistoren, hat sich die elektronische Technologie in den vergangenen Jahrzehnten rasant entwickelt. Die neuesten Fortschritte in der Molekularelektronik lösen verlockende Aussichten für die weitere Miniaturisierung bis hin zur Nanoskala aus.



Die Nachfrage nach immer besseren, schnelleren und kleineren elektronischen Geräten hat zur Weiterentwicklung der Elektronik zur Mikroelektronik geführt. Dabei kommen integrierte Schaltkreise zum Einsatz, bei denen auf wenigen Quadratzentimtern Millionen von Transistoren untergebracht sind. Die Gesetze der Quantenmechanik erlangen jedoch bei immer geringerem Platzangebot eine immer größere Bedeutung und haben Auswirkungen auf die Einschränkung bei der Materialauswahl und den Herstellungsmethoden. Die Gefahr der Überhitzung und von Überschneidungen zwischen den einzelnen elektronischen Komponenten haben zu einer festen Mindestgröße von Halbleitertransistoren geführt.



Die Mikroelektronik hat sich mittlerweile zur Nanoelektronik weiterentwickelt. Dabei entstanden Geräte, deren Konstruktion die quantenmechanischen Effekte auf der Nanometerskala zu ihrem Vorteil nutzen. In dieser Richtung liegt der Forschungsschwerpunkt auf der Verwendung organischer Materialien, die dieselben Funktionen wie herkömmliche Halbleiter erfüllen. Im Prinzip fungieren kovalent verbundene Moleküle als Verbindungsdrähte, durch die die Elektronen problemlos von einem Ende zum anderen fließen können. Der Elektronenfluss ist in hohem Maße abhängig von der Art der Moleküle, ihrer Geometrie und deren Orbital-Anordnung.

In einem Molekül ist jedes Orbital ein einzelnes, eigenständiges Energieniveau für die Elektronen, die dazu neigen, sich von höheren zu niedrigeren Energieniveus zu bewegen. Ein normaler leerer, niederenergetischer Elektronen-Orbital wird auch als Pi-Orbital bezeichnet. Die Konfiguration, bei der die Elektronen von einer Molekül-Komponente zur einer anderen übergehen, heißt konjugiert und der letzte Moleküldraht wird oft als Pi-konjugiertes System bezeichnet.

Im Rahmen des NANOTCAD-Projekts sind die aus einzelnen Phenylen-basierten Molekülen bestehenden zweipoligen winzigen Geräte die kleinsten Pi-konjugierten Gerätekomponenten. Diese werden unter Verwendung von zwei verschiedenen Stromübergangsmethoden hergestellt. Bei der ersten Methode wird der Übergang der Moleküle zwischen den zwei Drähten kreuzgeometrisch hergestellt, während bei der zweiten die Moleküle durch kontrollierte Elektromigration in Nanogaps platziert werden. Bei beiden Methoden werden Gold/Palladium-Nanodrähte als wesentliche Bestandteile verwendet, die in einheitlichen Drähten mit festgelegten Abmessungen und einer sauberen Oberfläche resultieren. In den entstehenden molekularen Geräten sind die von den Molekülen überbrückten Lücken zwischen den zwei Metallelektroden bei beiden Methoden kleiner als 1 Nanometer (1nm).

Da die Galvanotechnik-Methode mit verschiedenen Arten mono- und bifunktioneller Moleküle arbeitet, besitzt sie bedeutendes Potential für weitere damit verbundenen Anwendungen, z.B. auf Crossbar-Struktur basierte Speicherfelder.

Dr. Marko Burghard | ctm
Weitere Informationen:
http://www.fkf.mpg.de

Weitere Berichte zu: Elektron Mikroelektronik Molekül Transistor

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht UV-Kugel macht Lackieren einfach und schnell
16.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Vorzüge von 3D-Druck und Spritzguss kombiniert
16.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

24.04.2018 | HANNOVER MESSE

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics