Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halogeneffekt schützt Leichtbauwerkstoffe vor Oxidation

29.09.2004


Turbinenschaufeln aus TiAl (Bild: Rolls Royce)


Turbinenschaufeln aus TiAl für zukünftige Hochleistungsflugturbinen (Bild: MTU)


AiF verleiht Otto von Guericke-Preis 2004


Im Motoren- und Turbinenbau möchte die Industrie verstärkt neue Hochtemperatur-Leichtbauwerkstoffe einsetzen. Deren Festigkeitspotenzial reicht für Anwendungen bis zu 1000 Grad Celsius, aber bereits ab 700 Grad Celsius oxidieren sie zu stark. Professor Dr. Michael Schütze vom Karl-Winnacker-Institut der Dechema in Frankfurt am Main hat mit Hilfe des Halogeneffektes einen innovativen Oxidationsschutz für diese Hochtemperatur-Leichtbauwerkstoffe entwickelt. Nach der Implantation von Halogenen in die Oberfläche der Bauteile werden selbst nach längeren Betriebszeiten bei Temperaturen bis zu 1000 Grad Celsius nur wenige Mikrometer Metall durch Oxidation abgetragen. Die sich dadurch ergebende deutliche Erweiterung der Einsatzgrenzen dieser Werkstoffgruppe ist im Automobilbau und in der Luft- und Raumfahrt sowohl aus technologischer wie auch aus wirtschaftlicher Sicht von erheblicher Bedeutung. Dafür erhält Schütze in diesem Jahr den Otto von Guericke-Preis, den die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) alljährlich verleiht.

Titanaluminide (TiAl) gelten als Zwitter zwischen Metallen und Keramiken. Ihr mittleres spezifisches Gewicht ist mit 3,8 g/Kubikzentimeter weniger als halb so hoch wie das von Stählen und Legierungen auf Nickelbasis - bei vergleichbarer Hochtemperaturfestigkeit. Da ihre Oxidationsbeständigkeit ab 700 Grad Celsius deutlich nachlässt, waren ihre Einsatztemperaturen bislang für die meisten Anwendungen beschränkt. Abhilfe schaffen Fluor, Chlor, Brom oder Jod. Diese Halogene verhalten sich normalerweise aggressiv gegenüber metallischen Werkstoffen. Werden jedoch relativ geringe Mengen über Ionenimplantation oder Flüssigkeits-Tauchprozesse in die äußerste Werkstoffzone übertragen, tritt ein Oxidationsschutzeffekt auf. Die Halogene "lösen" bei Tempera-turen zwischen 700 und 1000 Grad Celsius das Aluminium selektiv in Form von Aluminiumhalogeniden aus der Werkstoffoberfläche heraus. Kaum verlassen die gasförmigen Halogenide die Oberfläche, reagieren sie mit dem Sauerstoff der Umgebung. Es bildet sich eine hauchdünne keramische Schutzschicht aus festem Aluminiumoxid. Da sie gasdicht ist, versperrt sie der umgebenden Atmosphäre den Zutritt zum Werkstoff. Außerdem heilt sie sich selbst. Sollte die Schicht abplatzen oder Löcher bekommen, so wächst sie wie menschliche Haut selbsttätig nach.


Vorteil der Ionenimplantation ist, dass die Halogene auf eine oberflächennahe Schicht von etwa einem Mikrometer begrenzt bleiben und die mechanischen Bauteileigenschaften nicht beeinflussen. Mit Hilfe der Ionenimplantation lassen sich die Halogenmengen sehr exakt dosieren. Über die gesamte Oberfläche kommt es gleichmäßig zu einer dramatischen Verbesserung der Oxidationsbeständigkeit. Dies ist besonders für Anwendungen in der Luft- und Raumfahrt von großer Bedeutung. Zudem eignet sich die Implantation nicht nur für ebene Oberflächen, sondern auch für komplexe Strukturen. Für weniger hochpreisige Anwendungen, für die eine hohe Präzision nicht unbedingt notwendig ist, laufen Arbeiten zur Entwicklung kostengünstigerer Verfahren wie Tauchen, Streichen oder Spritzen von halogenhaltigen Reservoirschichten, die nach Eindiffundieren der notwendigen Halogenmenge in die Werkstoffoberfläche wieder entfernt werden. Die Arbeiten zeigen ähnliche Erfolge wie die Ionenimplantation mit geringen Abstrichen bei der Gleichmäßigkeit des Effekts über die gesamte Oberfläche.

Umfangreiche Enwicklungsprogramme aller namhaften Automobilhersteller haben das Ziel, TiAl in wenigen Jahren auch in Großserien-Fahrzeugen einzusetzen. Mit Hilfe des leichteren Werkstoffs werden Treibstoffeinsparung und leisere Motoren angestrebt. Weitere Anwendungen sind Turbinenschaufeln in Flugzeugtriebwerken, stationären Gasturbinen und Abgasturboladern.

Professor Dr. Michael Schütze, Jahrgang 1952, studierte Werkstoffwissenschaften an der Universität Erlangen-Nürnberg und promovierte 1983 an der Rheinisch-Westfälischen TH Aachen, wo er sich 1991 auch habilitierte. Seit 1996 ist er Institutsleiter Werkstoffe am Karl-Winnacker-Institut der Dechema in Frankfurt am Main.

AiF-Präsident Johann Wilhelm Arntz wird den Otto von Guericke-Preis anlässlich der diesjährigen Tagung des Wissenschaftlichen Rates der AiF am 16. November 2004 in Berlin-Adlershof verleihen. Die Auszeichnung würdigt herausragende Leistungen auf dem Gebiet der industriellen Gemeinschaftsforschung kleiner und mittlerer Unternehmen. Der Preis ist mit 5000 Euro dotiert.

Ansprechpartner: Prof. Dr. Michael Schütze, Karl-Winnacker-Institut der Dechema e.V., Frankfurt/M., E-Mail: schuetze@dechema.de, Tel.: 069 7564-361

Silvia Behr | idw
Weitere Informationen:
http://www.aif.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise