Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halogeneffekt schützt Leichtbauwerkstoffe vor Oxidation

29.09.2004


Turbinenschaufeln aus TiAl (Bild: Rolls Royce)


Turbinenschaufeln aus TiAl für zukünftige Hochleistungsflugturbinen (Bild: MTU)


AiF verleiht Otto von Guericke-Preis 2004


Im Motoren- und Turbinenbau möchte die Industrie verstärkt neue Hochtemperatur-Leichtbauwerkstoffe einsetzen. Deren Festigkeitspotenzial reicht für Anwendungen bis zu 1000 Grad Celsius, aber bereits ab 700 Grad Celsius oxidieren sie zu stark. Professor Dr. Michael Schütze vom Karl-Winnacker-Institut der Dechema in Frankfurt am Main hat mit Hilfe des Halogeneffektes einen innovativen Oxidationsschutz für diese Hochtemperatur-Leichtbauwerkstoffe entwickelt. Nach der Implantation von Halogenen in die Oberfläche der Bauteile werden selbst nach längeren Betriebszeiten bei Temperaturen bis zu 1000 Grad Celsius nur wenige Mikrometer Metall durch Oxidation abgetragen. Die sich dadurch ergebende deutliche Erweiterung der Einsatzgrenzen dieser Werkstoffgruppe ist im Automobilbau und in der Luft- und Raumfahrt sowohl aus technologischer wie auch aus wirtschaftlicher Sicht von erheblicher Bedeutung. Dafür erhält Schütze in diesem Jahr den Otto von Guericke-Preis, den die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) alljährlich verleiht.

Titanaluminide (TiAl) gelten als Zwitter zwischen Metallen und Keramiken. Ihr mittleres spezifisches Gewicht ist mit 3,8 g/Kubikzentimeter weniger als halb so hoch wie das von Stählen und Legierungen auf Nickelbasis - bei vergleichbarer Hochtemperaturfestigkeit. Da ihre Oxidationsbeständigkeit ab 700 Grad Celsius deutlich nachlässt, waren ihre Einsatztemperaturen bislang für die meisten Anwendungen beschränkt. Abhilfe schaffen Fluor, Chlor, Brom oder Jod. Diese Halogene verhalten sich normalerweise aggressiv gegenüber metallischen Werkstoffen. Werden jedoch relativ geringe Mengen über Ionenimplantation oder Flüssigkeits-Tauchprozesse in die äußerste Werkstoffzone übertragen, tritt ein Oxidationsschutzeffekt auf. Die Halogene "lösen" bei Tempera-turen zwischen 700 und 1000 Grad Celsius das Aluminium selektiv in Form von Aluminiumhalogeniden aus der Werkstoffoberfläche heraus. Kaum verlassen die gasförmigen Halogenide die Oberfläche, reagieren sie mit dem Sauerstoff der Umgebung. Es bildet sich eine hauchdünne keramische Schutzschicht aus festem Aluminiumoxid. Da sie gasdicht ist, versperrt sie der umgebenden Atmosphäre den Zutritt zum Werkstoff. Außerdem heilt sie sich selbst. Sollte die Schicht abplatzen oder Löcher bekommen, so wächst sie wie menschliche Haut selbsttätig nach.


Vorteil der Ionenimplantation ist, dass die Halogene auf eine oberflächennahe Schicht von etwa einem Mikrometer begrenzt bleiben und die mechanischen Bauteileigenschaften nicht beeinflussen. Mit Hilfe der Ionenimplantation lassen sich die Halogenmengen sehr exakt dosieren. Über die gesamte Oberfläche kommt es gleichmäßig zu einer dramatischen Verbesserung der Oxidationsbeständigkeit. Dies ist besonders für Anwendungen in der Luft- und Raumfahrt von großer Bedeutung. Zudem eignet sich die Implantation nicht nur für ebene Oberflächen, sondern auch für komplexe Strukturen. Für weniger hochpreisige Anwendungen, für die eine hohe Präzision nicht unbedingt notwendig ist, laufen Arbeiten zur Entwicklung kostengünstigerer Verfahren wie Tauchen, Streichen oder Spritzen von halogenhaltigen Reservoirschichten, die nach Eindiffundieren der notwendigen Halogenmenge in die Werkstoffoberfläche wieder entfernt werden. Die Arbeiten zeigen ähnliche Erfolge wie die Ionenimplantation mit geringen Abstrichen bei der Gleichmäßigkeit des Effekts über die gesamte Oberfläche.

Umfangreiche Enwicklungsprogramme aller namhaften Automobilhersteller haben das Ziel, TiAl in wenigen Jahren auch in Großserien-Fahrzeugen einzusetzen. Mit Hilfe des leichteren Werkstoffs werden Treibstoffeinsparung und leisere Motoren angestrebt. Weitere Anwendungen sind Turbinenschaufeln in Flugzeugtriebwerken, stationären Gasturbinen und Abgasturboladern.

Professor Dr. Michael Schütze, Jahrgang 1952, studierte Werkstoffwissenschaften an der Universität Erlangen-Nürnberg und promovierte 1983 an der Rheinisch-Westfälischen TH Aachen, wo er sich 1991 auch habilitierte. Seit 1996 ist er Institutsleiter Werkstoffe am Karl-Winnacker-Institut der Dechema in Frankfurt am Main.

AiF-Präsident Johann Wilhelm Arntz wird den Otto von Guericke-Preis anlässlich der diesjährigen Tagung des Wissenschaftlichen Rates der AiF am 16. November 2004 in Berlin-Adlershof verleihen. Die Auszeichnung würdigt herausragende Leistungen auf dem Gebiet der industriellen Gemeinschaftsforschung kleiner und mittlerer Unternehmen. Der Preis ist mit 5000 Euro dotiert.

Ansprechpartner: Prof. Dr. Michael Schütze, Karl-Winnacker-Institut der Dechema e.V., Frankfurt/M., E-Mail: schuetze@dechema.de, Tel.: 069 7564-361

Silvia Behr | idw
Weitere Informationen:
http://www.aif.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht 3D-Druck jetzt auch mit Glas möglich
20.04.2017 | Karlsruher Institut für Technologie

nachricht Kluge Laserbearbeitungsköpfe im Digitalzeitalter
13.04.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI mit neuesten VR-Technologien auf der NAB in Las Vegas

24.04.2017 | Messenachrichten

Leichtbau serientauglich machen

24.04.2017 | Maschinenbau

Daten vom Kühlgerät in die Cloud

24.04.2017 | HANNOVER MESSE