Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halogeneffekt schützt Leichtbauwerkstoffe vor Oxidation

29.09.2004


Turbinenschaufeln aus TiAl (Bild: Rolls Royce)


Turbinenschaufeln aus TiAl für zukünftige Hochleistungsflugturbinen (Bild: MTU)


AiF verleiht Otto von Guericke-Preis 2004


Im Motoren- und Turbinenbau möchte die Industrie verstärkt neue Hochtemperatur-Leichtbauwerkstoffe einsetzen. Deren Festigkeitspotenzial reicht für Anwendungen bis zu 1000 Grad Celsius, aber bereits ab 700 Grad Celsius oxidieren sie zu stark. Professor Dr. Michael Schütze vom Karl-Winnacker-Institut der Dechema in Frankfurt am Main hat mit Hilfe des Halogeneffektes einen innovativen Oxidationsschutz für diese Hochtemperatur-Leichtbauwerkstoffe entwickelt. Nach der Implantation von Halogenen in die Oberfläche der Bauteile werden selbst nach längeren Betriebszeiten bei Temperaturen bis zu 1000 Grad Celsius nur wenige Mikrometer Metall durch Oxidation abgetragen. Die sich dadurch ergebende deutliche Erweiterung der Einsatzgrenzen dieser Werkstoffgruppe ist im Automobilbau und in der Luft- und Raumfahrt sowohl aus technologischer wie auch aus wirtschaftlicher Sicht von erheblicher Bedeutung. Dafür erhält Schütze in diesem Jahr den Otto von Guericke-Preis, den die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) alljährlich verleiht.

Titanaluminide (TiAl) gelten als Zwitter zwischen Metallen und Keramiken. Ihr mittleres spezifisches Gewicht ist mit 3,8 g/Kubikzentimeter weniger als halb so hoch wie das von Stählen und Legierungen auf Nickelbasis - bei vergleichbarer Hochtemperaturfestigkeit. Da ihre Oxidationsbeständigkeit ab 700 Grad Celsius deutlich nachlässt, waren ihre Einsatztemperaturen bislang für die meisten Anwendungen beschränkt. Abhilfe schaffen Fluor, Chlor, Brom oder Jod. Diese Halogene verhalten sich normalerweise aggressiv gegenüber metallischen Werkstoffen. Werden jedoch relativ geringe Mengen über Ionenimplantation oder Flüssigkeits-Tauchprozesse in die äußerste Werkstoffzone übertragen, tritt ein Oxidationsschutzeffekt auf. Die Halogene "lösen" bei Tempera-turen zwischen 700 und 1000 Grad Celsius das Aluminium selektiv in Form von Aluminiumhalogeniden aus der Werkstoffoberfläche heraus. Kaum verlassen die gasförmigen Halogenide die Oberfläche, reagieren sie mit dem Sauerstoff der Umgebung. Es bildet sich eine hauchdünne keramische Schutzschicht aus festem Aluminiumoxid. Da sie gasdicht ist, versperrt sie der umgebenden Atmosphäre den Zutritt zum Werkstoff. Außerdem heilt sie sich selbst. Sollte die Schicht abplatzen oder Löcher bekommen, so wächst sie wie menschliche Haut selbsttätig nach.


Vorteil der Ionenimplantation ist, dass die Halogene auf eine oberflächennahe Schicht von etwa einem Mikrometer begrenzt bleiben und die mechanischen Bauteileigenschaften nicht beeinflussen. Mit Hilfe der Ionenimplantation lassen sich die Halogenmengen sehr exakt dosieren. Über die gesamte Oberfläche kommt es gleichmäßig zu einer dramatischen Verbesserung der Oxidationsbeständigkeit. Dies ist besonders für Anwendungen in der Luft- und Raumfahrt von großer Bedeutung. Zudem eignet sich die Implantation nicht nur für ebene Oberflächen, sondern auch für komplexe Strukturen. Für weniger hochpreisige Anwendungen, für die eine hohe Präzision nicht unbedingt notwendig ist, laufen Arbeiten zur Entwicklung kostengünstigerer Verfahren wie Tauchen, Streichen oder Spritzen von halogenhaltigen Reservoirschichten, die nach Eindiffundieren der notwendigen Halogenmenge in die Werkstoffoberfläche wieder entfernt werden. Die Arbeiten zeigen ähnliche Erfolge wie die Ionenimplantation mit geringen Abstrichen bei der Gleichmäßigkeit des Effekts über die gesamte Oberfläche.

Umfangreiche Enwicklungsprogramme aller namhaften Automobilhersteller haben das Ziel, TiAl in wenigen Jahren auch in Großserien-Fahrzeugen einzusetzen. Mit Hilfe des leichteren Werkstoffs werden Treibstoffeinsparung und leisere Motoren angestrebt. Weitere Anwendungen sind Turbinenschaufeln in Flugzeugtriebwerken, stationären Gasturbinen und Abgasturboladern.

Professor Dr. Michael Schütze, Jahrgang 1952, studierte Werkstoffwissenschaften an der Universität Erlangen-Nürnberg und promovierte 1983 an der Rheinisch-Westfälischen TH Aachen, wo er sich 1991 auch habilitierte. Seit 1996 ist er Institutsleiter Werkstoffe am Karl-Winnacker-Institut der Dechema in Frankfurt am Main.

AiF-Präsident Johann Wilhelm Arntz wird den Otto von Guericke-Preis anlässlich der diesjährigen Tagung des Wissenschaftlichen Rates der AiF am 16. November 2004 in Berlin-Adlershof verleihen. Die Auszeichnung würdigt herausragende Leistungen auf dem Gebiet der industriellen Gemeinschaftsforschung kleiner und mittlerer Unternehmen. Der Preis ist mit 5000 Euro dotiert.

Ansprechpartner: Prof. Dr. Michael Schütze, Karl-Winnacker-Institut der Dechema e.V., Frankfurt/M., E-Mail: schuetze@dechema.de, Tel.: 069 7564-361

Silvia Behr | idw
Weitere Informationen:
http://www.aif.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mitarbeiter der Hochschule Ulm entwickeln neue Methode zur Desinfektion von Kontaktlinsen
17.07.2017 | Hochschule Ulm

nachricht Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
07.07.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops