Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glas fließt in Linsenform

18.08.2004


Peter Merz arbeitet mit Arrays, die bis zu 10 000 Linsen tragen können. Im anodischen Bonder dahinter wird Silizium mit Glas verbunden. © Fraunhofer ISIT


Der Trend zur Miniaturisierung betrifft auch optische Bauteile. Doch bisher können Glaslinsen nicht in jeder gewünschten Abmessung hergestellt werden. Mit einem neuen Verfahren lassen sich unterschiedlich hohe Mikrolinsen in großer Stückzahl zu kleinem Preis fertigen.

... mehr zu:
»Linse »Linsenform »Plasma »Process »Vakuum

Miniaturisierung wird groß geschrieben. Hersteller mikrooptischer Bauelemente verspüren eine immer größere Nachfrage nach immer kleineren Teilen. Linsen etwa werden in der Telekommunikation eingesetzt, wo sie Lichtsignale in Bündel von Glasfasern einkoppeln. Auch für Sicherheitssysteme wie Fingerabdrucksensoren sind kleinste Linsen gefragt - sei es auf Scheckkarten oder als Wegfahrsperre in Autos. Als Material für die winzigen Bauteile verwendet man üblicherweise Kunststoffe; zunehmend jedoch Borosilikatglas. Die Vorteile: Diese Glasart ist besonders kratzfest, formstabil und mechanisch belastbar. Der mikrotechnischen Strukturierung von Gläsern sind jedoch Grenzen gesetzt: Linsen, die im Plasma geätzt werden, können prozessbedingt eine bestimmte Strukturhöhe nicht überschreiten. Optische Eigenschaften wie die Brennweite können allerdings nur über Material oder Krümmung an die jeweilige Anwendung angepasst werden. Ist das Material festgelegt, kann dies nur durch unterschiedliche Linsenform und -höhe geschehen. Plasmaätzen im Vakuum ist zeitaufwändig und teuer. In die luftleere Kammer strömt Gas, das zu Plasma ionisiert wird und das Glas langsam abbaut.

Wissenschaftler vom Fraunhofer-Institut für Siliziumtechnologie ISIT haben ein neues Herstellungsverfahren entwickelt, das enorme Vorteile bietet. "Mit dem Glass Flow Process können wir die Herstellungskosten auf ein Zehntel reduzieren", betont Ingenieur Peter Merz. "Zudem lassen sich Verhältnisse von Höhe : Dicke gleich 1:1 erreichen." Für eine 0,1 Millimeter breite Linse heißt das: Sie kann mit bis zu 100 Mikrometern etwa so hoch sein wie ein menschliches Haar. Beim Plasmaätzen hingegen erreicht sie nur ein Fünftel dieses Werts.


Merz erklärt den Produktionsprozess der viskosen Deformation folgendermaßen: "Ein Siliziumwafer dient als Urform. Ein schnelles Ätzverfahren erzeugt darin viele kleine Vertiefungen, die dem gewünschten Durchmesser der Linsen entsprechen. Unter Vakuum wird danach eine Glasplatte aus Borosilikatglas mit der Urform dicht verbunden. Beim Erhitzen erweicht das Glas und sinkt in die Vertiefungen." Die Oberflächenform sowie die Höhe der Linsen wird beim Glas Flow Process durch das zeitliche Temperaturprofil bestimmt. Dank des kontaktlosen Herstellungsprinzips weisen die gefertigten Bauelemente eine extrem niedrige Oberflächenrauhigkeit auf. Daher müssen sie nicht extra nachbearbeitet werden.

Ansprechpartner: Dr. Peter Merz, Telefon: 04821 / 17-4513, Fax: -4590, merz@isit.fraunhofer.de

Dr. Johannes Ehrlenspiel | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.isit.fraunhofer.de
http://www.fraunhofer.de/presse

Weitere Berichte zu: Linse Linsenform Plasma Process Vakuum

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mitarbeiter der Hochschule Ulm entwickeln neue Methode zur Desinfektion von Kontaktlinsen
17.07.2017 | Hochschule Ulm

nachricht Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
07.07.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie