Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Laser macht Feuerwehreinsätze sicherer - Physiker Ludger Wöste erhält Patent

19.04.2004


Ein neues Patent der Freien Universität Berlin kann Feuerwehreinsätze sicherer machen und dient in Abfallanlagen dem Umweltschutz. Dabei handelt es sich um ein neues laserunterstütztes Verfahren zur Materialbestimmung, das auch zur Bearbeitung von Werkstoffen eingesetzt werden kann. Erstmals ist es möglich, ohne aufwändige Nachregelung eines Laserfokus, Material wechselnder Beschaffenheit und Stärke zu analysieren oder gar zu bohren oder zu schneiden. Der Physiker Ludger Wöste von der Freien Universität hat sich gemeinsam mit seinem Kollegen Jean-Pierre Wolf der Universität Lyon das Verfahren patentieren lassen. Die Erfindung ist international von der Patentverwertungsgesellschaft ipal GmbH exklusiv für die Freie Universität verwertet worden.

... mehr zu:
»Erfindung »Laser »Patent »Physik

Oftmals sind Ursache und Art eines Feuers nicht sofort zu klären, vor allem dann nicht, wenn der Ort schwer zugänglich ist. Giftige Gase können entweichen oder Explosionen durch falsche Brandbekämpfung ausgelöst werden. Das birgt große Gefahren für die Löschteams. Hier bietet die Erfindung von Ludger Wöste und Jean-Pierre Wolf die Möglichkeit, sofort und gefahrlos Materialanalysen aus großer Distanz durchzuführen. Darüber hinaus kann die Technik, leicht modifiziert, zur Sortierung von Abfall und selbst als Laserbohrer eingesetzt werden.

Bei herkömmlichen Laseranalysen konnte bisher der Laserfokus nur in einem bestimmten festen Punkt erzeugt werden. Das hieß, wenn man mehrere Materialien unterschiedlicher Größe und Art analysieren oder bearbeiten wollte, musste der Sammelpunkt des Lichtstrahls genau positioniert sein. Durch das Forscherteam wurde ein Verfahren entwickelt, mit dem die gebündelte Laserleistung über eine haarfeine und variierbare Strecke gebildet werden kann: das so genannte Plasma-Filament. Dieses Lichtbündel kann auch in großer Entfernung entstehen. Man schießt, wie im Beispiel des Brandes, aus geeigneter Entfernung einen Laser ins Feuer und kann die brennenden Stoffe identifizieren. Dazu wird mittels eines hochenergetischen Lasers der Fokus erzeugt, in dem das Material verdampft und ionisiert wird. Jede Materie, die so zum Plasmaleuchten angeregt wird, zeigt ein charakteristisches Aussehen und kann durch eine Analysevorrichtung bestimmt werden. Das kann zum Beispiel durch ein Spektrometer geschehen, das durch ein Fernrohr betrieben wird.


Ebenfalls kann der Laser in Müllsortierungsanlagen verwendet werden. Hier befinden sich meist Gegenstände unterschiedlicher Größe auf einem Transportband. Diese durchlaufen das Filament und können nach einer Materialanalyse dann sortiert werden. Sogar in materialbearbeitenden Betrieben findet das System seinen Einsatz. Wenn sich der Laser beispielsweise durch Metall bohrt, muss durch das gebildete Filament die Brennpunktjustierung nicht mehr nachreguliert werden.

Das Plasma-Filament entsteht durch hochintensive ultrakurze Laserpulse. Die Pulse haben die Energie von Terawatt (Billionen Watt) und können in der Zeitspanne von einer Femtosekunde liegen. Das ist der millionste Teil einer Milliardstelsekunde oder bildlicher beschrieben: Würde man eine Femtosekunde auf eine Sekunde ausdehnen, so würde das Blitzlicht eines Fotoapparats im Vergleich dazu mehr als eine halbe Million Jahre lang leuchten. Erreicht die Spitzenleistung des Lasers einen kritischen Wert, wird eine selbstfokussierende Wirkung hervorgerufen. Dadurch entstehen nichtlineare optische Effekte, die durch den so genannten Kerr-Effekt den Brechungsindex der Luft erhöhen. Durch die extrem hohen Lichtfeldstärken verhält sich die Luft wie eine Sammellinse. Darüber hinaus wird die Luft um den hochenergetischen Laser ionisiert. Die entstandene, multiphotonionisierte Luft wirkt wie eine Streulinse. Das Wechselspiel zwischen dem Sammel- und Streulinsenverhalten der Luft bewirkt eine Bündelung des Lasers über eine lange Strecke. Dieser Fokus über eine bestimmte Strecke mit ionisierten Abschnitten wird Filament genannt.

Das erste Patent erhielt im Juni 2003 die Gemeinschaftsforschung der Freien Universität Berlin (Prof. Wöste) und der Universität Lyon (Prof. Wolf). Die Erfinder haben sich bereits mehrere gemeinschaftliche Erfindungen patentieren lassen, eine davon ist die Erfindung des "Regenwächters" (Die Patentschrift ihrer neusten Entwicklung wurde der Freien Universität Berlin vom Deutschen Patent- und Markenamt (DPMA) erteilt.

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Ludger Wöste, Institut für Experimentelle Physik der Freien Universität Berlin, Tel.: 030 / 838-55566, E-Mail: woeste@physik.fu-berlin.de

Auskünfte zur Patentverwertung:
Patrik Varadinek, Abteilung Forschungsförderung und Forschungsvermittlung der Freien Universität Berlin, Tel.: 030 / 838-73606

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de/presse/fup/archiv/pdw03/pdw_03_021.html

Weitere Berichte zu: Erfindung Laser Patent Physik

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE