Leuchtende Zwerge

Fälschungssicheres High-Tech-Osterei aus dem Forschungszentrum Karlsruhe: Das Logo des Forschungszentrums enthält fluoreszierende Nanopartikel.

Forschungszentrum Karlsruhe entwickelt mehrschichtige fluoreszierende Nanopartikel

Im Licht einer UV-Lampe leuchten sie grün, violett oder blau: fluoreszierende Nanopartikel mit einer Schicht aus organischen Farbstoffen. Hergestellt werden sie mit einem im Forschungszentrum Karlsruhe entwickelten Mikrowellen-Plasmaverfahren zur Herstellung mehrschichtiger Nanopartikel. Die empfindlichen Farbstoff-Oberflächen werden dabei zusätzlich mit einem Polymer beschichtet, das chemische Reaktionen verhindert und die Partikeleigenschaften stabilisiert. Die Fluoreszenz bleibt dadurch lange erhalten. Dies eröffnet den Nanopartikeln vielfältige Anwendungen, vor allem in Sicherheitstechnologie und Medizintechnik.

Fälschungssicheres High-Tech-Osterei aus dem Forschungszentrum Karlsruhe: Das Logo des Forschungszentrums enthält fluoreszierende Nanopartikel.

Fluoreszierende Nanopartikel leuchten unter UV-Licht in verschiedenen Intensitäten und Farben. Die mehrschichtigen Partikel wurden mit dem im Forschungszentrum Karlsruhe entwickelten Mikrowellen-Plasmaverfahren hergestellt.
Luxus-Uhren oder andere hochwertige Markenartikel können bald mit einem neuartigen Verfahren vor Fälschungen geschützt werden: Eine Auflage aus fluoreszierenden Nanopartikeln auf dem Zifferblatt oder einem anderen Apparateteil kann als eindeutige Kennzeichnung dienen. Unter UV-Licht zeigen die Auflagen ein charakteristisches Leuchten, das nicht gefälscht werden kann. Die Herstellung von beschichteten Nanopartikeln ist nämlich so schwierig, dass entsprechende Produktionsanlagen nur in hochspezialisierten Labors aufzubauen sind. Andererseits benötigt man für die Kennzeichnung so geringe Materialmengen, dass sich der Einsatz auch auf Massenprodukten lohnen kann.

Schon die Herstellung von unbeschichteten Nanopartikeln ist schwierig: Wenn die Winzlinge („nano“ ist das griechische Wort für „Zwerg“) mit Durchmessern von nur einigen Milliardstel Meter dann auch noch eine Beschichtung erhalten sollen, erfordert dies sehr spezielle Kenntnisse und Apparaturen. Ein Verfahren zur Herstellung mehrschichtiger Nanopartikel wurde in den letzten Jahren im Forschungszentrum Karlsruhe entwickelt, das so genannte Mikrowellen-Plasmaverfahren. In einem ersten Schritt werden Nanopartikel mit genau definierter, enger Teilchengrößenverteilung in einem Plasma erzeugt. Diese Partikel können – je nach Material – unterschiedliche Eigenschaften tragen, beispielsweise die, magnetisch zu sein. Die erzeugten Partikel gelangen dann in eine zweite Reaktionszone, wo eine Beschichtung, zum Beispiel ein organischer Farbstoff, aufgebracht wird, bevor in einem dritten Prozessschritt eine weitere Lage aus einem Polymer (etwa Plexiglas) als äußere Schutzhülle entsteht.

„Die Schutzhülle schirmt die fluoreszierenden Nanopartikel von der Umgebungsluft ab, so dass sie ihre Eigenschaften nicht verlieren. Zusätzlich kann man mit diesem Verfahren Materialien mit kombinierten Eigenschaften herstellen. Jede Schicht hat eine eigene, charakteristische Eigenschaft“, beschreibt Dr. Dorothée Vinga Szabó, die Leiterin dieses Projekts im Institut für Materialforschung des Forschungszentrums Karlsruhe, das Problem und seine Lösung. „Außerdem halten diese Schichten die Partikel davon ab, gleich nach der Herstellung wieder zusammenzukleben und damit ihre typischen Nano-Eigenschaften zu verlieren.“

Viele Eigenschaften eines Materials ändern sich, wenn man mit der Partikelgröße in den Nanobereich, also in Dimensionen um ein Millionstel Millimeter, vorstößt. Diese neuartigen Materialeigenschaften gehen verloren, wenn die Nanopartikel wieder zu größeren Einheiten koagulieren.

Die Wechselwirkung der beschichteten Nanopartikel mit ihrer Umgebung hängt nun vor allem von der äußeren Schicht und nicht mehr vom Farbstoff ab. Die Partikel können deshalb in Wasser oder organischen Lösungsmitteln suspendiert und damit in die verschiedensten Materialien eingebracht werden. Die im Forschungszentrum hergestellten Partikel eröffnen außerdem Einsatzgebiete in medizinischer Diagnostik und Biologie.

Wenn Sie die fluoreszierenden Nanopartikel mit eigenen Augen sehen wollen: Besuchen Sie den Stand des Forschungszentrums Karlsruhe auf der Hannover-Messe (Halle 14, Stand G52).

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Media Contact

Inge Arnold FZK

Weitere Informationen:

http://www.fzk.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer