Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler in aller Welt suchen nach der Membran der Träume

06.10.2003


Sie sind hauchdünn, doch ohne sie geht in der Brennstoffzelle gar nichts: In den Membranen, die bei PEM-Brennstoffzellen Wasserstoff und Luft voneinander trennen, liegt noch eines der größten Entwicklungspotenziale der Brennstoffzellentechnik überhaupt. Zwar sind längst praxistaugliche Membranen auf dem Markt, doch die Traummembran mit den idealen Eigenschaften ist noch immer nicht gefunden.


Nafion ist bislang eines der wichtigsten Materialien für die Membranen von Brennstoffzellen. Hohe Temperaturen von 200 Grad Celsius erlaubt eine solche Membran jedoch nicht. Foto: Dupont.com



Die Aufgabe einer Brennstoffzellen-Membran ist klar: Sie muss das Brenngas Wasserstoff an der Anode vom Sauerstoff an der Kathode fernhalten, positiv geladene Wasserstoffionen jedoch möglichst ungehindert passieren lassen. Unverzichtbarer Helfer beim Transport dieser Protonen ist Wasser, denn H2O-Moleküle können Protonen aufnehmen oder abgeben. Daher muss die Membran ständig feucht sein, sonst bricht der Protonenfluss zusammen und die Brennstoffzelle liefert keine Energie mehr.



Das Wasser in der Membran hat jedoch seine Tücken: Steigt die Temperatur in der Zelle auf über 100 Grad Celsius an, verdampft es. Daher arbeiten die meisten PEM-Brennstoffzellen bei Temperaturen von nur etwa 80 Grad. Eine weitere Schwierigkeit ist, dass die Protonen auf ihrem Weg durch die Membran Wassermoleküle mitnehmen. Daher muss ständig Wasser nachgeliefert werden, damit die Membran auf der Anodenseite nicht austrocknet. Das kann durch Bewässerungskanäle oder durch eine Befeuchtung des Brenngases geschehen. Beides macht Brennstoffzellensysteme anfälliger und teurer.

Das Temperaturlimit von 100 Grad Celsius bringt gleich drei Herausforderungen für die Entwickler mit sich: Die Kühlung der Brennstoffzelle ist wegen des geringen Temperaturunterschiedes zur Umgebung sehr viel schwieriger. Besonders bei Brennstoffzellenautos, die ja auch bei Außentemperaturen von 50 Grad Celsius noch funktionieren sollen, kann das aufwändige Kühlsysteme erfordern. Die zweite Konsequenz der niedrigen Temperaturen ist, dass teure Platinkatalysatoren nötig sind, um die chemischen Reaktionen überhaupt in Gang zu bringen. Diese Katalysatoren sind jedoch extrem empfindlich gegenüber Kohlenmonoxid (CO). Dieses Gas ist als Verunreinigung im Wasserstoff enthalten, besonders wenn dieser durch die Reformierung von Erdgas oder Methanol hergestellt wird. Das Kohlenmonoxid setzt sich auf den Katalysatoren ab und blockiert diese. Abhilfe schafft hier nur Wärme: Ab etwa 150 Grad Celsius geben die Moleküle die Katalysatoroberfläche wieder weitgehend frei.

Alle diese Probleme wären auf einen Schlag gelöst, gäbe es nur eine Membran, die ohne Wasser und bei Temperaturen von über 150 Grad Celsius funktionieren würde. "Darin liegt der Schlüssel zu wesentlich einfacheren Brennstoffzellensystemen", bestätigt Klaus-Dieter Kreuer vom Max-Planck-Institut für Festkörperforschung in Stuttgart. Kreuer gehört zu den zahlreichen Wissenschaftlern weltweit, die nach dieser Membran der Träume suchen.

Aufsehen erregten vor zwei Jahren Wissenschaftler des Californian Institute of Technology (CalTech) mit dem Material Cäsiumhydrogensulfat (CsHSO4): Dieser Feststoff nimmt bei über 140 Grad Celsius einzelne Eigenschaften einer Flüssigkeit an. Unter anderem weist er eine gute Leitfähigkeit für Protonen auf. Doch den Durchbruch haben die amerikanischen Forscher damit noch längst nicht geschafft: Für mehr als zum Test im Labor eignet sich CsHSO4 nicht, denn das Material ist weich, löst sich in Wasser auf und hat für den Start eines kalten Systems eine zu geringe Leitfähigkeit.

Weitere heiße Kandidaten sind Kombinationen von Polymeren mit Phosphorsäure (H3PO4), die den Protonenaustausch ermöglicht. Addukte von Polybenzimidazol (PBI) gehören zu dieser Materialklasse, die unter anderem dänische Entwickler vom Unternehmen Danish Power Systems in 500-Watt-Brennstoffzellenstacks erproben. Dabei konnten Temperaturen von bis zu 200 Grad Celsius erreicht werden. Doch die Forscher sind trotz einiger Verbesserungen mit ihrer Arbeit noch am Anfang ihres Weges.

Einen anderen Ansatz verfolgen die Wissenschaftler der Max-Planck-Institute in Stuttgart und Mainz. Sie arbeiten mit so genannten Heterozyklen – einer Klasse organischer Moleküle, die aus einem oder mehreren Ringen bestehen und einzelne so genannte Heteroatome enthalten. Diese können sowohl als Protonendonor als auch als –akzeptor fungieren und ermöglichen damit sehr große Leitfähigkeiten. Werden sie in geeigneter Weise an polymere Strukturen gebunden, bleibt diese Eigenschaft fast vollständig erhalten.

Aus den untersuchten Modellsystemen können die Wissenschaftler eindeutig schließen, dass sehr hohe Protonenleitfähigkeit in voll-polymeren Systemen auch im trockenen Zustand möglich ist. Diese Konzepte nun auf stabile und wirtschaftlich herstellbare Materialien zu übertragen, ist nun die nächste Herausforderung der Max-Planck-Forscher. Den entscheidenden Durchbruch können sie zwar noch nicht vermelden, doch die Suche nach der idealen Membran geht weiter.

Ulrich Dewald | Initiative Brennstoffzelle

Weitere Berichte zu: Leitfähigkeit Membran ProTon Temperatur Wasserstoff

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Testverfahren für Photovoltaikwafer als DIN SPEC
26.06.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

nachricht Ausweg aus dem Chrom-Verbot
30.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie

Digitalanzeige mit Touchscreen WAY-AX & WAY-DX von WayCon

27.06.2017 | Energie und Elektrotechnik

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie