Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler in aller Welt suchen nach der Membran der Träume

06.10.2003


Sie sind hauchdünn, doch ohne sie geht in der Brennstoffzelle gar nichts: In den Membranen, die bei PEM-Brennstoffzellen Wasserstoff und Luft voneinander trennen, liegt noch eines der größten Entwicklungspotenziale der Brennstoffzellentechnik überhaupt. Zwar sind längst praxistaugliche Membranen auf dem Markt, doch die Traummembran mit den idealen Eigenschaften ist noch immer nicht gefunden.


Nafion ist bislang eines der wichtigsten Materialien für die Membranen von Brennstoffzellen. Hohe Temperaturen von 200 Grad Celsius erlaubt eine solche Membran jedoch nicht. Foto: Dupont.com



Die Aufgabe einer Brennstoffzellen-Membran ist klar: Sie muss das Brenngas Wasserstoff an der Anode vom Sauerstoff an der Kathode fernhalten, positiv geladene Wasserstoffionen jedoch möglichst ungehindert passieren lassen. Unverzichtbarer Helfer beim Transport dieser Protonen ist Wasser, denn H2O-Moleküle können Protonen aufnehmen oder abgeben. Daher muss die Membran ständig feucht sein, sonst bricht der Protonenfluss zusammen und die Brennstoffzelle liefert keine Energie mehr.



Das Wasser in der Membran hat jedoch seine Tücken: Steigt die Temperatur in der Zelle auf über 100 Grad Celsius an, verdampft es. Daher arbeiten die meisten PEM-Brennstoffzellen bei Temperaturen von nur etwa 80 Grad. Eine weitere Schwierigkeit ist, dass die Protonen auf ihrem Weg durch die Membran Wassermoleküle mitnehmen. Daher muss ständig Wasser nachgeliefert werden, damit die Membran auf der Anodenseite nicht austrocknet. Das kann durch Bewässerungskanäle oder durch eine Befeuchtung des Brenngases geschehen. Beides macht Brennstoffzellensysteme anfälliger und teurer.

Das Temperaturlimit von 100 Grad Celsius bringt gleich drei Herausforderungen für die Entwickler mit sich: Die Kühlung der Brennstoffzelle ist wegen des geringen Temperaturunterschiedes zur Umgebung sehr viel schwieriger. Besonders bei Brennstoffzellenautos, die ja auch bei Außentemperaturen von 50 Grad Celsius noch funktionieren sollen, kann das aufwändige Kühlsysteme erfordern. Die zweite Konsequenz der niedrigen Temperaturen ist, dass teure Platinkatalysatoren nötig sind, um die chemischen Reaktionen überhaupt in Gang zu bringen. Diese Katalysatoren sind jedoch extrem empfindlich gegenüber Kohlenmonoxid (CO). Dieses Gas ist als Verunreinigung im Wasserstoff enthalten, besonders wenn dieser durch die Reformierung von Erdgas oder Methanol hergestellt wird. Das Kohlenmonoxid setzt sich auf den Katalysatoren ab und blockiert diese. Abhilfe schafft hier nur Wärme: Ab etwa 150 Grad Celsius geben die Moleküle die Katalysatoroberfläche wieder weitgehend frei.

Alle diese Probleme wären auf einen Schlag gelöst, gäbe es nur eine Membran, die ohne Wasser und bei Temperaturen von über 150 Grad Celsius funktionieren würde. "Darin liegt der Schlüssel zu wesentlich einfacheren Brennstoffzellensystemen", bestätigt Klaus-Dieter Kreuer vom Max-Planck-Institut für Festkörperforschung in Stuttgart. Kreuer gehört zu den zahlreichen Wissenschaftlern weltweit, die nach dieser Membran der Träume suchen.

Aufsehen erregten vor zwei Jahren Wissenschaftler des Californian Institute of Technology (CalTech) mit dem Material Cäsiumhydrogensulfat (CsHSO4): Dieser Feststoff nimmt bei über 140 Grad Celsius einzelne Eigenschaften einer Flüssigkeit an. Unter anderem weist er eine gute Leitfähigkeit für Protonen auf. Doch den Durchbruch haben die amerikanischen Forscher damit noch längst nicht geschafft: Für mehr als zum Test im Labor eignet sich CsHSO4 nicht, denn das Material ist weich, löst sich in Wasser auf und hat für den Start eines kalten Systems eine zu geringe Leitfähigkeit.

Weitere heiße Kandidaten sind Kombinationen von Polymeren mit Phosphorsäure (H3PO4), die den Protonenaustausch ermöglicht. Addukte von Polybenzimidazol (PBI) gehören zu dieser Materialklasse, die unter anderem dänische Entwickler vom Unternehmen Danish Power Systems in 500-Watt-Brennstoffzellenstacks erproben. Dabei konnten Temperaturen von bis zu 200 Grad Celsius erreicht werden. Doch die Forscher sind trotz einiger Verbesserungen mit ihrer Arbeit noch am Anfang ihres Weges.

Einen anderen Ansatz verfolgen die Wissenschaftler der Max-Planck-Institute in Stuttgart und Mainz. Sie arbeiten mit so genannten Heterozyklen – einer Klasse organischer Moleküle, die aus einem oder mehreren Ringen bestehen und einzelne so genannte Heteroatome enthalten. Diese können sowohl als Protonendonor als auch als –akzeptor fungieren und ermöglichen damit sehr große Leitfähigkeiten. Werden sie in geeigneter Weise an polymere Strukturen gebunden, bleibt diese Eigenschaft fast vollständig erhalten.

Aus den untersuchten Modellsystemen können die Wissenschaftler eindeutig schließen, dass sehr hohe Protonenleitfähigkeit in voll-polymeren Systemen auch im trockenen Zustand möglich ist. Diese Konzepte nun auf stabile und wirtschaftlich herstellbare Materialien zu übertragen, ist nun die nächste Herausforderung der Max-Planck-Forscher. Den entscheidenden Durchbruch können sie zwar noch nicht vermelden, doch die Suche nach der idealen Membran geht weiter.

Ulrich Dewald | Initiative Brennstoffzelle

Weitere Berichte zu: Leitfähigkeit Membran ProTon Temperatur Wasserstoff

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie
11.12.2017 | Universität Bayreuth

nachricht Bioverfahrenstechnik - Mit Kugeln optimal messen
01.12.2017 | Fraunhofer-Institut für Elektronische Nanosysteme

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten