Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mobiler elektronischer Wächter zum Schutz vor gefährlichen Gasen und Feuer

15.09.2003


Man stelle sich ein Unglücksszenario vor: In einer großen Produktionshalle strömt Gas aus. Nun kommt es darauf an, das Leck so schnell wie möglich zu finden. In solchen Situationen könnte ein mobiler Roboter wertvolle Dienste leisten, der das Gas "riechen" kann. Der Tübinger Physiker und Informatiker Achim Lilienthal hat ein überraschendes Konzept entwickelt, mit dem sich die komplexe Aufgabe technisch lösen ließe.



Ein Hund mit seinem feinen Geruchssinn lässt sich nicht so leicht nachbauen. Doch einzelne Schnüffelaufgaben können auch Roboter übernehmen. Elektronische Nasen werden zum Beispiel in der Nahrungsmittelindustrie bereits vielfach eingesetzt. Noch sind diese Geräte sehr groß und empfindlich gegenüber Temperaturschwankungen, für manche Aufgaben müssten sie jedoch klein, beweglich und robust sein. Der Physiker Achim Lilienthal arbeitet daran, einen mobilen Roboter mit einem einfachen Riechsinn auszustatten und das sichere Aufspüren von Gasquellen einzuprogrammieren. Der Mitarbeiter am Wilhelm-Schickard-Institut für Informatik der Universität Tübingen am Lehrstuhl für Rechnerarchitektur von Prof. Andreas Zell hat eine Lösungsmöglichkeit gefunden, als er das Problem einfach mal von der gegensätzlichen Seite betrachtet hat.



Zunächst hat Achim Lilienthal einen Roboter konstruiert, der sich in Reaktion auf eine momentan gemessene Konzentrationsdifferenz von Gasen bewegt. "Das Verhalten solcher Vehikel wurde von dem Tübinger Forscher Valentino Braitenberg theoretisch analysiert", erklärt Lilienthal. Bei den Braitenberg-Vehikeln sind die Sensoren und Antriebsmotoren direkt gekoppelt. So kann zum Beispiel ein Verhalten realisiert werden, das den Roboter jeweils in Richtung der relativ höheren Konzentration dreht. In seinen Versuchen verwendet Lilienthal Alkohol in einem offenen Glas, um über die Verdunstung eine Gasquelle zu simulieren. Dann wird der Roboter auf die Suche geschickt. Der Alkoholgeruch wird mit dafür besonders empfindlichen Metalloxid-Gasdetektoren gemessen. Diese sind in einer Stereo-Konfiguration am Roboter angebracht und durch eine Scheidewand in zwei "Nasenlöcher" getrennt. Die Sensoren messen die Menge der Alkoholmoleküle in der Raumluft. Theoretisch sind nun alle Voraussetzungen für ein mobiles System zum Aufspüren von Gas gegeben.

Doch die Praxis stellt dem Forscher noch ein ganz grundsätzliches Problem: Die Quelle würde man dort vermuten, wo die Gaskonzentration am höchsten ist - doch das ist, was die momentane Verteilung angeht, üblicherweise nicht der Fall. "Die Konzentrationsverteilung des verdunstenden Alkohols über dem Glas oder auch über anderen Gasquellen hat man sich in der Robotik lange sehr einfach vorgestellt: wie eine ideale Verteilungskurve, bei der die Konzentration genau über der Quelle am größten ist und in allen Richtungen gleichmäßig abflacht, je weiter man sich von ihr entfernt", sagt Lilienthal. Bei der Verteilung eines Gases im Raum spielt jedoch ein chaotischer Transportmechanismus eine entscheidende Rolle: Turbulente Strömungen führen dazu, dass sich hohe Gaskonzentrationen sozusagen fleckenförmig im Raum verteilen. Außerdem bilden sich als Folge von Temperaturunterschieden auch in Räumen ohne Lüftung relativ zeitkonstante Strömungen aus, die ebenfalls eine asymmetrische Verteilung eines Gases um eine Quelle bewirken. "So kann man zum Beispiel bei gleichem Versuchsaufbau im gleichen Raum im Sommer und im Winter völlig unterschiedliche Gasverteilungen beobachten", sagt der Wissenschaftler.

Bei seinen Forschungen zieht sich Achim Lilienthal dennoch geschickt aus der Affäre: Er hat festgestellt, dass die Turbulenzen über einen längeren Zeitraum gerechnet eine ähnliche Konzentrationsverteilung bewirken wie sie ideal-theoretisch angenommen wurde. Er hat eine Methode entwickelt, mit der man eine solche gemittelte Verteilung auf einer Konzentrationskarte abbilden kann. Der Physiker hatte für seine Untersuchungen zwei verschiedene Testsysteme zur Verfügung: Im schwedischen Örebro nutzte er einen 30 Zentimeter großen Roboter, in Tübingen einen 75 Zentimeter großen. "Im Test wollte ich feststellen, wie gut ein Roboter Gasquellen aufspüren kann", erklärt Lilienthal. Auf einem Spielfeld wurde der Roboter jeweils einen Meter weit weg vom Alkoholglas in Startposition gebracht. Wenn er zur Quelle kam, wurde das Experiment gestoppt. "In jeweils drei Stunden andauernden Experimenten gelangte ein Roboter, der sich immer der momentan höheren Konzentration zuwendet, etwa 30 bis 40 Mal zur Quelle", sagt der Forscher. In einem Langzeitexperiment, bei dem der kleine Roboter insgesamt fünf Kilometer zurücklegte, hat Lilienthal die durchschnittlich bis zur Quelle zurückgelegte Strecke ermittelt. Im Vergleich zu einem zufällig umherfahrenden Roboter hat er dabei eine Verringerung um bis zu 40 Prozent festgestellt - wobei dieser Wert von der gewählten Versuchsanordnung abhängt.

"Aber es gibt aus diesen Versuchen noch ein schöneres Ergebnis", sagt Lilienthal. Der Forscher hat ein Vehikel umgekehrt programmiert: Die beiden Geruchssensoren hat er über Kreuz mit dem Motor der jeweils anderen Seite verbunden. Der Roboter dreht sich somit von der Seite weg, auf der im Moment die höhere Konzentration gemessen wird. "Wenn man das Experiment wiederholt macht, ergibt dies auf den Spurenbildern des Roboters ein chaotisches Wirrwarr, aber dicht um das Alkoholglas ist der Roboter praktisch gar nicht herumgefahren", beschreibt Lilienthal. Bei dieser umgekehrten Versuchsanordnung lässt der elektronische Wächter die Quelle zuverlässig aus und kann auf diese Weise erst feststellen, dass es sich tatsächlich um eine Gasquelle handelt. Mit der ursprünglichen Anordnung mit ungekreuzter Sensor-Motor-Verbindung ist dies nicht möglich: der Roboter bleibt vor der Quelle nur deshalb stehen, weil er sie mit anderen Sensoren als Hindernis erkannt hat. "Die Lokalisierung nach dem Prinzip ’Exploration und Vermeidung hoher Konzentrationen’ dauert zwar relativ lange, kann aber durch den Einsatz mehrer Roboter beschleunigt werden. Bislang ist es die einzige Möglichkeit, eine Gasquelle, die kein Hindernis für den Roboter darstellt, als solche zu erkennen."

Bisher können zum Beispiel in Kaufhäusern oder auf einem ausgedehnten Firmengelände feste Sensoren für Gase oder Feuer installiert werden. Doch da diese nur jeweils einen kleinen Bereich abdecken können, ist die genaue Lokalisierung einer Gasquelle aufwendig und teuer. "Hier wie auch bei der Suche nach dem Brandherd bei Feuer könnte ein mobiler Roboter gute Dienste leisten", beschreibt Achim Lilienthal geplante Anwendungen.

Nähere Informationen:

Achim Lilienthal
Wilhelm-Schickard-Institut für Informatik - Rechnerarchitektur
Sand 1, 72076 Tübingen
Tel. 07071 - 29-78988, Fax -5091
E-Mail lilien@informatik.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Berichte zu: Gasquell Gasquelle Lilienthal Physik Roboter Sensor

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht 3D-Bilder von Krebszellen im Körper: Medizinphysiker aus Halle stellen neues Verfahren vor
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Innovatives Verfahren zur umweltschonenden Gülleaufbereitung kommt auf den Markt
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics