Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mobiler elektronischer Wächter zum Schutz vor gefährlichen Gasen und Feuer

15.09.2003


Man stelle sich ein Unglücksszenario vor: In einer großen Produktionshalle strömt Gas aus. Nun kommt es darauf an, das Leck so schnell wie möglich zu finden. In solchen Situationen könnte ein mobiler Roboter wertvolle Dienste leisten, der das Gas "riechen" kann. Der Tübinger Physiker und Informatiker Achim Lilienthal hat ein überraschendes Konzept entwickelt, mit dem sich die komplexe Aufgabe technisch lösen ließe.



Ein Hund mit seinem feinen Geruchssinn lässt sich nicht so leicht nachbauen. Doch einzelne Schnüffelaufgaben können auch Roboter übernehmen. Elektronische Nasen werden zum Beispiel in der Nahrungsmittelindustrie bereits vielfach eingesetzt. Noch sind diese Geräte sehr groß und empfindlich gegenüber Temperaturschwankungen, für manche Aufgaben müssten sie jedoch klein, beweglich und robust sein. Der Physiker Achim Lilienthal arbeitet daran, einen mobilen Roboter mit einem einfachen Riechsinn auszustatten und das sichere Aufspüren von Gasquellen einzuprogrammieren. Der Mitarbeiter am Wilhelm-Schickard-Institut für Informatik der Universität Tübingen am Lehrstuhl für Rechnerarchitektur von Prof. Andreas Zell hat eine Lösungsmöglichkeit gefunden, als er das Problem einfach mal von der gegensätzlichen Seite betrachtet hat.



Zunächst hat Achim Lilienthal einen Roboter konstruiert, der sich in Reaktion auf eine momentan gemessene Konzentrationsdifferenz von Gasen bewegt. "Das Verhalten solcher Vehikel wurde von dem Tübinger Forscher Valentino Braitenberg theoretisch analysiert", erklärt Lilienthal. Bei den Braitenberg-Vehikeln sind die Sensoren und Antriebsmotoren direkt gekoppelt. So kann zum Beispiel ein Verhalten realisiert werden, das den Roboter jeweils in Richtung der relativ höheren Konzentration dreht. In seinen Versuchen verwendet Lilienthal Alkohol in einem offenen Glas, um über die Verdunstung eine Gasquelle zu simulieren. Dann wird der Roboter auf die Suche geschickt. Der Alkoholgeruch wird mit dafür besonders empfindlichen Metalloxid-Gasdetektoren gemessen. Diese sind in einer Stereo-Konfiguration am Roboter angebracht und durch eine Scheidewand in zwei "Nasenlöcher" getrennt. Die Sensoren messen die Menge der Alkoholmoleküle in der Raumluft. Theoretisch sind nun alle Voraussetzungen für ein mobiles System zum Aufspüren von Gas gegeben.

Doch die Praxis stellt dem Forscher noch ein ganz grundsätzliches Problem: Die Quelle würde man dort vermuten, wo die Gaskonzentration am höchsten ist - doch das ist, was die momentane Verteilung angeht, üblicherweise nicht der Fall. "Die Konzentrationsverteilung des verdunstenden Alkohols über dem Glas oder auch über anderen Gasquellen hat man sich in der Robotik lange sehr einfach vorgestellt: wie eine ideale Verteilungskurve, bei der die Konzentration genau über der Quelle am größten ist und in allen Richtungen gleichmäßig abflacht, je weiter man sich von ihr entfernt", sagt Lilienthal. Bei der Verteilung eines Gases im Raum spielt jedoch ein chaotischer Transportmechanismus eine entscheidende Rolle: Turbulente Strömungen führen dazu, dass sich hohe Gaskonzentrationen sozusagen fleckenförmig im Raum verteilen. Außerdem bilden sich als Folge von Temperaturunterschieden auch in Räumen ohne Lüftung relativ zeitkonstante Strömungen aus, die ebenfalls eine asymmetrische Verteilung eines Gases um eine Quelle bewirken. "So kann man zum Beispiel bei gleichem Versuchsaufbau im gleichen Raum im Sommer und im Winter völlig unterschiedliche Gasverteilungen beobachten", sagt der Wissenschaftler.

Bei seinen Forschungen zieht sich Achim Lilienthal dennoch geschickt aus der Affäre: Er hat festgestellt, dass die Turbulenzen über einen längeren Zeitraum gerechnet eine ähnliche Konzentrationsverteilung bewirken wie sie ideal-theoretisch angenommen wurde. Er hat eine Methode entwickelt, mit der man eine solche gemittelte Verteilung auf einer Konzentrationskarte abbilden kann. Der Physiker hatte für seine Untersuchungen zwei verschiedene Testsysteme zur Verfügung: Im schwedischen Örebro nutzte er einen 30 Zentimeter großen Roboter, in Tübingen einen 75 Zentimeter großen. "Im Test wollte ich feststellen, wie gut ein Roboter Gasquellen aufspüren kann", erklärt Lilienthal. Auf einem Spielfeld wurde der Roboter jeweils einen Meter weit weg vom Alkoholglas in Startposition gebracht. Wenn er zur Quelle kam, wurde das Experiment gestoppt. "In jeweils drei Stunden andauernden Experimenten gelangte ein Roboter, der sich immer der momentan höheren Konzentration zuwendet, etwa 30 bis 40 Mal zur Quelle", sagt der Forscher. In einem Langzeitexperiment, bei dem der kleine Roboter insgesamt fünf Kilometer zurücklegte, hat Lilienthal die durchschnittlich bis zur Quelle zurückgelegte Strecke ermittelt. Im Vergleich zu einem zufällig umherfahrenden Roboter hat er dabei eine Verringerung um bis zu 40 Prozent festgestellt - wobei dieser Wert von der gewählten Versuchsanordnung abhängt.

"Aber es gibt aus diesen Versuchen noch ein schöneres Ergebnis", sagt Lilienthal. Der Forscher hat ein Vehikel umgekehrt programmiert: Die beiden Geruchssensoren hat er über Kreuz mit dem Motor der jeweils anderen Seite verbunden. Der Roboter dreht sich somit von der Seite weg, auf der im Moment die höhere Konzentration gemessen wird. "Wenn man das Experiment wiederholt macht, ergibt dies auf den Spurenbildern des Roboters ein chaotisches Wirrwarr, aber dicht um das Alkoholglas ist der Roboter praktisch gar nicht herumgefahren", beschreibt Lilienthal. Bei dieser umgekehrten Versuchsanordnung lässt der elektronische Wächter die Quelle zuverlässig aus und kann auf diese Weise erst feststellen, dass es sich tatsächlich um eine Gasquelle handelt. Mit der ursprünglichen Anordnung mit ungekreuzter Sensor-Motor-Verbindung ist dies nicht möglich: der Roboter bleibt vor der Quelle nur deshalb stehen, weil er sie mit anderen Sensoren als Hindernis erkannt hat. "Die Lokalisierung nach dem Prinzip ’Exploration und Vermeidung hoher Konzentrationen’ dauert zwar relativ lange, kann aber durch den Einsatz mehrer Roboter beschleunigt werden. Bislang ist es die einzige Möglichkeit, eine Gasquelle, die kein Hindernis für den Roboter darstellt, als solche zu erkennen."

Bisher können zum Beispiel in Kaufhäusern oder auf einem ausgedehnten Firmengelände feste Sensoren für Gase oder Feuer installiert werden. Doch da diese nur jeweils einen kleinen Bereich abdecken können, ist die genaue Lokalisierung einer Gasquelle aufwendig und teuer. "Hier wie auch bei der Suche nach dem Brandherd bei Feuer könnte ein mobiler Roboter gute Dienste leisten", beschreibt Achim Lilienthal geplante Anwendungen.

Nähere Informationen:

Achim Lilienthal
Wilhelm-Schickard-Institut für Informatik - Rechnerarchitektur
Sand 1, 72076 Tübingen
Tel. 07071 - 29-78988, Fax -5091
E-Mail lilien@informatik.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Berichte zu: Gasquell Gasquelle Lilienthal Physik Roboter Sensor

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Verfahren bringt komplex geformte Verbundwerkstoffe in die Serie
23.01.2017 | Evonik Industries AG

nachricht Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile
19.01.2017 | Fraunhofer IFAM

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie