Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röhren sortieren in der Nano-Welt

04.07.2003


Forschungszentrum Karlsruhe entwickelt Verfahren, um metallische von nichtmetallischen Nanoröhren zu trennen


Illustration der Versuchsanordnung zur Trennung von Nanoröhren unterschiedlichen Typs. Die metallischen Nanoröhren (schwarz) werden aus einer Suspension zwischen den Mikroelektroden abgeschieden, die halbleitenden (weiß) verbleiben in der Lösung



Kohlenstoff-Nanoröhren gelten als Schlüsselmaterialien der Nanotechnologie, insbesondere der Nanoelektronik. Bei der Herstellung der Nanoröhren entsteht aber immer ein Gemisch zweier verschiedener Typen von Röhrchen mit unterschiedlichen elektrischen Eigenschaften: Metalle und Halbleiter. Das stellte die Forscher bisher vor unlösbare Probleme und schränkte die Anwendung von Nanoröhren stark ein. Wissenschaftler aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe haben nun ein Verfahren entwickelt, mit dem sich Nanoröhren sortieren lassen. Dabei werden die metallischen von den halbleitenden Röhrchen in einem elektrischen Wechselfeld getrennt. Die nun sortenreinen Röhrchen stehen für weitere Anwendungen zur Verfügung. Die Forscher erwarten dadurch einen wichtigen Impuls für die Entwicklung der Nanoelektronik mit Kohlenstoff-Nanoröhren.



Im Jahr 1991 entdeckte eine japanische Forschergruppe, dass sich Kohlenstoffatome zu winzigen Röhrchen formen können, deren Wände nur eine Atomlage dick sind. Seitdem sind die "Nanoröhren" zu einem der wichtigsten Forschungsobjekte der Nanotechnologie geworden. Insbesondere in der molekularen Elektronik galten sie früh als Grundbausteine elektronischer Bauteile. Diese Erwartung erfüllte sich allerdings nur in Teilen, weil die Nanoröhren eine unangenehme Eigenschaft haben, die eine Verwendung in vielen Bereichen bisher verhinderte: Bei ihrer Herstellung entsteht ein Gemisch aus zwei Typen mit unterschiedlichen elektrischen Eigenschaften. Je nach Anordnung der Atome in den Wänden der Röhrchen verhalten sie sich entweder wie Metalle oder wie Halbleiter. Eine Trennung der beiden Typen war bisher nicht möglich.

Wissenschaftlern aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe ist es nun gelungen, ein Verfahren zu entwickeln, mit dem die Röhrchentypen getrennt werden können. "In einem elektrischen Wechselfeld mit einer Frequenz von 10 Millionen Hertz wandern die metallischen und halbleitenden Nanoröhren in entgegengesetzte Richtungen. Damit können die metallischen Röhrchen abgeschieden werden. Die nichtmetallischen verbleiben in der Lösung", erklären Dr. Ralph Krupke, Physiker, und Dr. Frank Hennrich, Chemiker, die das Problem in einem fächerübergreifenden Ansatz lösen konnten. "Der Trennmechanismus ist ein Nebenprodukt unserer eigentlichen Arbeit, die sich mit den elektrischen Eigenschaften von Nanoröhren beschäftigt. Wir haben dabei festgestellt, dass wir zwischen unseren Elektroden immer nur einen der beiden Röhrchentypen, nämlich den metallischen, einfangen konnten. Das brachte uns auf die Idee, dies zu einer Methode zum Trennen der Röhrchentypen auszubauen."

Das Verfahren lässt sich in drei Schritte aufteilen: Zunächst wird eine wässrige Lösung hergestellt, in der die Röhrchen einzeln vorliegen, das heißt keine "Klumpen" bilden. Diese Lösung wird nun in ein ungleichförmiges (inhomogenes) elektrisches Wechselfeld gebracht. Aufgrund der unterschiedlichen elektrischen Eigenschaften der metallischen und der halbleitenden Röhrchen werden sie in entgegengesetzte Richtungen gezogen (durch so genannte Dielektrophorese) und können abgeschieden werden. Eine anschließende Analyse der Materialeigenschaften (durch Raman-Spektroskopie) zeigt, dass ausschließlich metallische Nanoröhrchen abgeschieden wurden; die nichtmetallischen verblieben in der Lösung.

Das Verfahren wurde vom Forschungszentrum zum Patent angemeldet. Im nächsten Schritt soll es für die Trennung größerer Mengen von Röhrchen weiterentwickelt werden.

Die wissenschaftliche Arbeit wird in einer der nächsten Ausgaben der renommierten amerikanischen Zeitschrift "Science" erscheinen und wurde wegen ihrer Bedeutung schon vorab in "Science Express" veröffentlicht (R. Krupke, F. Hennrich, H. v. Löhneysen and M. M. Kappes: Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes). Sie wird außerdem von einem kommentierenden Artikel begleitet.


Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Inge Arnold | idw

Weitere Berichte zu: Nanoröhre Nanotechnologie Röhrchen Röhrchentypen Wechselfeld

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Smarte Rollstühle, vorausschauende Prothesen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie