Raman-Spektroskopie schafft mehr Zuverlässigkeit in der Mikroelektronik

Da alle Substanzen charakteristische spektroskopische Eigenschaften haben, anhand derer sie eindeutig spezifiziert werden können, ermöglicht die Mikro-Raman-Mikroskopie eine einzigartige Analyse und Identifizierung von Chemikalien und liefert zudem eine räumliche Auflösung. Im Projekt STREAM wurde ein System entwickelt, mit dem diese Technik so verfeinert wurde, dass sie zum Messen lokaler Materialbeanspruchungen in Halbleiterbauelementen und damit zur Steigerung der Zuverlässigkeit des Endprodukts eingesetzt werden kann.

Mechanische Spannungen stellen ein erhebliches Problem für die Verarbeitung und Zuverlässigkeit elektronischer Mikrosysteme dar. Solche örtlich begrenzten mechanischen Spannungen treten in fast allen Phasen der Verarbeitung und Gehäuseunterbringung dieser Bauelemente auf. Diese Materialbeanspruchungen können die einwandfreie Funktion der Chips beeinträchtigen und sollten daher möglichst niedrig gehalten werden. Die Mikro-Raman-Spektroskopie (µRS) ist eine zerstörungsfreie Technik, bei der die Wechselwirkungen zwischen monochromatischem Laserlicht, das über ein Mikroskop fokussiert wird, und dem Kristallgitter (Phononen) oder molekularen Schwingungen ausgewertet werden. Die räumliche Auflösung der meisten gängigen Instrumente beträgt allerdings im besten Fall rund 1mm. Im STREAM-Projekt wurde ein System entwickelt, mit dem diese Technik verfeinert wurde.

Im Rahmen dieses Projekts sollte die Empfindlichkeit des µRS-Verfahrens für örtliche Materialspannungen im Kristallgitter zur Verarbeitung von Mikroelektronik-Bauelementen genutzt werden. Die steigende Packungsdichte und Miniaturisierung der mikroelektronischen Bauelemente erforderten allerdings analytische Techniken mit einer räumlichen Auflösung, die noch größer ist als diejenige der normalerweise eingesetzten µRS-Systeme. Um eine höhere räumliche Auflösung zu erreichen, wurde das konventionelle System mit einer automatischen Fokussierung ausgestattet, die für einen konstanten Brennpunkt von etwa 0,8 Mikron (bei Laserlicht mit einer Wellenlänge von 458 nm, Objektiv 100x) sorgt. Diese räumliche Auflösung kann außerdem durch Verwendung eines ölumspülten Objektivs auf 0,3 Mikron gesteigert werden. Diese Verbesserungen machen es möglich, die µRS-Technik zur Analyse von Materialbeanspruchungen einzusetzen, die in der Mikroelektronik-Produktion auftreten, wobei die erhaltenen Daten mit denen vergleichbar sind, die mit anderen Verfahren wie z.B. CBED (Convergent-Beam Electron Diffraction, Elektronenbeugung im konvergenten Strahlenbündel) und dem Finite-Elemente-Modell (FEM) gewonnen werden können.

Da die Mikroelektronik ein sehr schnell wachsendes Gebiet der Technik ist, gibt es hier auch einen wachsenden Bedarf an Möglichkeiten zur Bewertung der erreichbaren Zuverlässigkeit. Mit den beschriebenen Verbesserungen könnte sich das µRS-Verfahren als exzellentes Hilfsmittel für die Verarbeitung von Halbleiterchips und mikroelektronischen Systemen von noch höherer Zuverlässigkeit und Qualität eignen.

Kontakt

Ingrid de Wolf (Dr)

IMECvzw
Head of Microsystems Reliability Group
Kapeldreef 75
3001
Leuven
BELGIUM
Tel: +32-16-281463
Fax: +32-16-281097
E-Mail: ingrid.dewolf@imec.be

Media Contact

Cordis Technologie-Marktplatz

Weitere Informationen:

http://www.imec.be

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer