Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lack misst Druck und Schwingungen

27.01.2003


Um Drücke aller Art zu erfassen, hält die Messtechnik ein breites Spektrum von Sensoren bereit. Doch bei Messungen im Windkanal sollen sie die Strömung möglichst wenig stören. Besser als Folien gewährleistet dies ein neuer Lack mit einem piezoelektrischen Polymer.



Neue Flugzeuge und Autoprototypen müssen trotz aller Computersimulationen in den Windkanal. Während sie darin von Luft umströmt werden, messen die Entwickler Druckänderungen und Strömungsgeschwindigkeiten in den verschiedenen Bereichen. Dazu werden immer weniger Fäden oder Rauch eingesetzt, sondern hochentwickelte Sensoren, die den Luftstrom möglichst wenig beeinflussen. Eine Möglichkeit sind Foliensensoren aus piezoelektrischen Materialien. Ihr Nachteil: Besonders auf gekrümmte Flächen können sie nur schwer aufgeklebt werden und in der Luftströmung haften sie schlecht. Nachteile, die es bei einem Lack, der am Fraunhofer-Institut für Angewandte Polymerforschung IAP entwickelt wurde, nicht gibt.



Das Messprinzip ist zunächst einfach: Druck erzeugt im Material eine elektrische Spannung; umgekehrt beginnt es zu schwingen, wenn eine Wechselspannung angelegt wird. Daher eignen sich piezoelektrische Materialien nicht nur für Drucksensoren, sondern auch als Schallquelle oder für Aktoren - also Bewegungselemente verschiedenster Art. Im Fall des neuen Lackes ist der aktive Stoff ein Vinylidenfluorid-Kopolymer - ein zum Polyethylen verwandter Kunststoff, bei dem die Hälfte der Wasserstoffatome durch Fluoratome ersetzt wurden. "Das Polymer ist lange bekannt", erklärt Dr. Burkhard Elling, Projektentwickler im Forschungsbereich Funktionale Polymersysteme. "Ein wesentliches Problem bestand darin, eine geeignete Technik zu entwickeln, um den Lack mit kontrollierter Schichtdicke auf den Untergrund aufzutragen." Auf den richtigen Mix seiner Eigenschaften kommt es also an: Der Lack muss sprühbar sein, darf aber auch an gekrümmten Flächen nicht abfließen. Zudem sollte eine Schichtdicke zwischen zehn und fünzig Mikrometern reproduzierbar aufgetragen werden können. Mit der Lackierung allein ist es nicht getan: Damit daraus eine druckempfindliche Sensorschicht wird, muss sie elektrisch gepolt und abschließend mit einem Metall bedampft werden, das als Deckelektrode fungiert.

Bisher konnten am IAP solche Sensorschichten auf flexiblen strukturierten Leiterplatten aufgebracht werden. Doch auch größere Flächen im Metermaßstab sind realisierbar. Neben der Funktion als Sensor für Druckänderungen in Strömungsversuchen, eröffnet sich mit dem Lack ein weites Feld von Anwendungen, etwa für Überwachungs- und Kontrollsensoren in der Alarm- und Verkehrstechnik. Ebenso in der Bauteilprüfung: Hier kann gemessen werden, welche mechanischen Schwingungen in den unterschiedlichen Bereichen auftreten.

Ansprechpartner:
Dr. Burkhard Elling
Telefon 03 31 / 5 68-19 17
Fax 03 31 / 5 68-39 15
elling@iap.fraunhofer.de

Dr. habil. Rudi Danz
Telefon 03 31 / 5 68-19 15
danz@iap.fraunhofer.de


Isolde Rötzer | idw
Weitere Informationen:
http://www.iap.fraunhofer.de
http://www.fraunhofer.de/german/press/pi/index.html

Weitere Berichte zu: Druckänderung Lack Polymer Schwingung Sensor

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics