Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode für die Analytik von Nanometer dünnen Siliziumoxid-Schichten in Halbleiterbauelementen

16.12.2002


Das Problem: Konventionelle Analysenmethoden nicht mehr ausreichend


Im Zuge der Miniaturisierung von elektronischen Bauelementen werden immer kleinere Strukturen und dünnere Schichten notwendig, so z.B. können die Gate-Oxid Schichten, die in Transistoren den Dotierungsbereich im Siliziumwafer vom Polysilizium trennen, bei neuesten Entwicklungen bereits dünner als ein Nanometer sein (1 Nanometer ist ein Millionstel Millimeter). Aufgrund einer aktuellen Kooperation mit austriamicrosystems konnten im Sonderforschungsbereich „Elektroaktive Stoffe“ der Grazer Universitäten Wissenschafter des Forschungsinstitutes für Elektronenmikroskopie der TU Graz ein leistungsfähiges Verfahren für die Untersuchung dieser Nanometer dünnen Schichten entwickeln.

Neuartige Charakterisierungsmethode


Für die mikroskopische Charakterisierung von dünnen Oxidschichten in Halbleitern wurde bisher vor allem die Hochauflösungselektronenmikroskopie eingesetzt, die aber in der Praxis Schwierigkeiten bereitet, da der Kontrast in den Bildern oft unzureichend ist. Als alternative Analysenmethode kann die Elektronenenergieverlustspektrometrie herangezogen werden, denn die hochenergetischen Elektronen erleiden bei der Wechselwirkung mit der Probe charakteristische Energieverluste, was für die Detektion dieser dünnen Schichten eingesetzt werden kann. Grazer Forscher schlugen nun erstmals vor sogenannte „Niederenergie“-Verlustelektronen zu verwenden, die bisher nicht für die Charakterisierung dieser Nanostrukturen eingesetzt wurden, da dies aufgrund der Vorhersagen anderer Forscher als nicht zielführend erachtet wurde. Denn unter diesen experimentellen Bedingungen sollte die Auflösung in Bildern, die mit Niederenergie-Verlustelektronen aufgenommen werden, für die Abbildung der dünnen Schichten nicht ausreichend sein.

„Seeing the invisible“

Mit dem neuen Verfahren kann der Verlauf von extrem dünnen Oxidschichten in Halbleiterbauelementen sichtbar gemacht werden und die Schichten können entgegen den Vorhersagen mit hoher Ortsauflösung, wesentlich verkürzter Messzeit und mit exzellenter Qualität abgebildet werden. Damit nützen die Grazer aus, dass nur ein geringer Teil der Elektronen die Bildinformation verschmiert, was in der Praxis kaum stört. Für diese Arbeiten wird das leistungsstärkste Elektronenmikroskop Österreichs, das an der TU Graz installiert ist, eingesetzt.

Einsatz in der Praxis

Das neue Verfahren wird bereits für die Charakterisierung von Halbleiterbauelementen von austriamicrosystems eingesetzt und ermöglicht Aussagen über den Aufbau dieser extrem dünnen Oxidschichten, die vorher nicht in dieser Qualität und Aussagekraft zur Verfügung standen. Da Grenzflächenphänomene die Eigenschaften von modernen nanostrukturierten Werkstoffen generell stark beeinflussen, wird die neue Methode auch für andere Bauelemente von Bedeutung sein: So wird die Methode derzeit für die Charakterisierung von „Light-emitting devices“ (LEDs) adaptiert. Weitere Anwendungen bei verschleißhemmenden Schichten sind in Vorbereitung.

Über austriamicrosystems

Die austriamicrosystems AG mit Hauptsitz in Unterpremstätten bei Graz gehört zu den weltweit führenden Entwicklern und Produzenten von anwendungs- und applikationsspezifischen Mikrochips, die speziell auf individuelle Kundenwünsche angepasst werden. Das Unternehmen ist in die vier strategischen Geschäftsfeldern Automotive, Communications, Industry & Medical und Full Service Foundry aufgegliedert und beschäftigt derzeit an 14 internationalen Standorten mehr als 800 Mitarbeiter.


Fachkontakt:

Dipl. Ing. Dr. Gerald Meinhardt
R&D-Process Engineer
austriamicrosystems AG
E-mail:gerald.meinhardt@austriamicrosystems.com

Ao.Univ.-Prof. Dr. Ferdinand Hofer
Forschungsinstitut für Elektronenmikroskopie
Technische Universität Graz
E-mail:Ferdinand.hofer@austriamicrosystems.com

Univ.-Prof. Dr. Ferdinand Hofer | TU Graz

Weitere Berichte zu: Halbleiterbauelement Nanometer Oxidschicht Schicht

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Smarte Sensoren steuern Industrieprozesse von morgen
31.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie