Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winziger Drucksensor als Schlüsselbaustein für die Mikroreaktionstechnik

21.10.2002



In der chemischen Industrie bahnt sich eine kleine Revolution an: Künftig könnten Produkte nicht mehr in großen Rührkesseln, sondern in winzigen Anlagen mit haardünnen Kanälen und ebenso schmalen Reaktionskammern hergestellt werden. Siemens-Forscher haben für diese Technik einen Miniatursensor entwickelt, der gleichzeitig Druck und Temperatur misst. Wie das Forschungsmagazin Pictures of the Future (www.siemens.de/pof) berichtet, wurde damit ein Schlüsselbaustein für den industriellen Betrieb der Mikroreaktionstechnik geschaffen.


Die Miniaturisierung hätte für die Industrie zahlreiche Vorteile: Unternehmen wären mit kleineren Anlagen wesentlich flexibler und hätten zugleich größeren Investitionsschutz. Denn der Umbau auf ein anderes Produkt wäre schneller möglich, es gäbe keine Fehlinvestitionen in große Anlagen. Geringere Mengen an Ausgangsstoffen bedeuten auch geringere Gefahren, da es fast immer von der Menge abhängt, ob Gemische zu große Wärme entwickeln. Reaktionen mit kleinen Mengen sind zudem besser zu steuern und liefern damit mehr erwünschte Chemikalien und weniger Nebenprodukte. Experten gehen davon aus, dass Mikroreaktoren ab 2005 in größerem Maßstab in der Industrie im Einsatz sind. Siemens beteiligt sich an einem vom Bundesforschungsministerium mitfinanzierten Projekt, das Mikroreaktionssysteme reif für die Praxis machen soll. Bis Mitte 2003 wollen die Partner ein System bauen, das eine modulare Mikrofluidik für die Versorgung mit Ausgangsstoffen enthält, sowie eine integrierte Sensorik, Analytik und automatisierte Prozessleittechnik.

Siemens-Wissenschaftler in Berlin entwickelten dafür einen Sensor, dessen druckempfindliche Membran nur einen Durchmesser von rund einem Millimeter hat. Die Membran gibt den Druck über einen Stempel an eine elektrisch leitende Struktur weiter. Deren Widerstand verändert sich dabei und liefert ein der Druckdifferenz proportionales Signal. Der Vorteil gegenüber bisherigen Minisensoren: Das Bauteil kann direkt in den Reaktor integriert werden und besitzt keine Ritzen, in denen Chemikalien haften können, die dann spätere Reaktionen stören könnten. Der Sensor besteht aus zwei Siliziumteilen, die gebondet sind. Das so genannte Direktbonden ist eine Art Kleben, wobei das Silizium mit Chemikalien vorbehandelt wird. Dabei lagern sich auf der Oberfläche Hydroxid-Moleküle ab. Beim Zusammenpressen haften die Teile über Wasserstoffbrücken aneinander, erst beim Erhitzen auf etwa 1000 Grad Celsius entsteht eine nahtlose und untrennbare Verbindung. Sind zusätzliche Metalle im Spiel, darf die Temperatur aber nicht zu hoch gewählt werden, da sonst Metallatome in die Siliziumschicht wandern und die Empfindlichkeit des Sensors verschlechtern. Die Siemens-Forscher haben die Klebetechnik zur Perfektion gebracht. Sie kommen heute mit nur 250 Grad Celsius aus, was noch komplexere Bauteile ermöglicht.

Norbert Aschenbrenner | Siemens

Weitere Berichte zu: Membran Mikroreaktionstechnik Schlüsselbaustein Sensor

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise