Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie im Computer: neuartige Computersimulationen chemischer Reaktionen in der Halbleiterindustrie

11.10.2002


Quanten-Monte-Carlo Rechnungen erklären die Ablösung (Desorption) von molekularem Wasserstoff von einer Siliziumoberfläche. Das Bild links zeigt, wie diese Reaktion auf atomarer Ebene abläuft: Zwei Wasserstoffatome (blau), lösen sich von den Siliziumatomen der Oberfläche (gelb) ab (als 1 markiert), nähern sich entlang ihres Reaktionsweges an (rot gezeichnet) und verbinden sich schließlich zu einem Wasserstoffmolekül (als 2 markiert), das in die Gasphase desorbiert. Das Bild rechts zeigt die Siliziumoberfläche nach der Desorption: Ein Siliziumatom, an das zuvor ein Wasserstoffatom gebunden war, hat nun eine andere, energetisch günstigere Position eingenommen und ist in die Oberfläche hinein gewandert (als 3 markiert)


Forscherteam um Berliner Max-Planck-Wissenschaftler gelingt mit neuartigen Computersimulationen die Beschreibung einer wichtigen chemischen Reaktion in der Halbleiterindustrie


Viele Eigenschaften von Halbleitern werden gezielt durch chemische Reaktionen an ihren Oberflächen manipuliert. Doch wie diese Prozesse auf atomarer Ebene ablaufen, ist noch weitestgehend unbekannt. Jetzt haben Forscher des Fritz-Haber-Instituts in Berlin sowie der Universitäten Essen, Leiden (Niederlande) und Cork (Irland) mit Hilfe von Computersimulationen geklärt, in welchen Einzelschritten ein solcher technologisch wichtiger Prozess - die Reaktion von Wasserstoff mit Silizium - tatsächlich verläuft (Physical Review Letters, 14. Oktober 2002). Dazu setzten die Forscher erstmals ein so genanntes Quanten-Monte-Carlo-Verfahren ein, mit dem sich Reaktionsschritte weit genauer als bisher berechnen lassen: Damit können Prozesse im Computer in Ruhe beobachtet werden, die in realen chemischen Reaktionen nur wenige Nanosekunden dauern und auf einer Fläche von Millionstel Millimetern stattfinden.

Ob in der Forschung oder der industriellen Fertigung, Halbleitermaterialien mit gewünschten Eigenschaften entstehen meist über eine Kette von chemischen Reaktionen. Um diese besser steuern zu können, arbeiten Forscher heute intensiv daran, die einzelnen Schritte solcher Reaktionen im Detail, sozusagen aus der Sicht der beteiligten Atome, zu verstehen. Dazu greifen Wissenschaftler immer häufiger auf den Computer zurück und simulieren das Verhalten der Moleküle. Bisher gelang das für die an sich einfache und gut untersuchte Reaktion von Wasserstoff mit Siliziumoberflächen nur sehr unvollständig. Diese Reaktion ist technologisch bedeutsam, etwa für das Ätzen und Oberflächenveredeln oder das Wachsen von Siliziumkristallen.


Die bisher zur Simulation dieser Reaktion eingesetzten Modelle konnten die experimentellen Befunde nicht schlüssig erklären. Vielmehr sehen sich die Forscher mit dem berüchtigten "Rätsel der Energiebarrieren" konfrontiert: Wasserstoff-Moleküle, die auf die Silizium-Oberfläche auftreffen, müssen zunächst in einzelne Wasserstoffatome zerfallen (dissoziieren), die dann wiederum chemische Bindungen mit Silizium-Atomen eingehen (adsorbieren). Auf dem Weg dahin müssen die Moleküle eine hohe Energiebarriere überwinden. Deshalb dissoziieren aus einem Wasserstoffgas bei Raumtemperatur nur jene Moleküle, die zufällig eine hohe Energie haben, tatsächlich an der Oberfläche. Erstaunlicherweise zeigen die Moleküle jedoch beim umgekehrten Prozess, der Desorption von der Oberfläche, im Experiment keine besonders hohe Energie. Deshalb scheint es, als könnten sie die Oberfläche auf einem ganz anderen Weg verlassen, ohne eine Energiebarriere überqueren zu müssen.

Theoretische Modelle können diese unterschiedlichen Reaktionswege zwar nachbilden, stehen bislang aber auf recht wackligen Beinen: den dazu durchgeführten Dichtefunktional-Berechnungen hapert es an Genauigkeit, da sie die Wechselwirkungen der Elektronen nur näherungsweise erfassen. Auch Referenzrechnungen mit genaueren quanten-chemischen Methoden helfen nicht weiter. Wegen des dazu erforderlichen hohen Rechenaufwandes können sie nur kleinere Modellsysteme mit wenigen Dutzend Atomen behandeln, so dass wichtige strukturelle Aspekte der realen Siliziumoberfläche außer Acht bleiben.

Die Berliner Max-Planck-Forscher und ihre Kollegen von den Universitäten Essen, Leiden (NL) und Cork (IR) haben nun zur Berechnung der einzelnen Reaktionsschritte einen neuen theoretischen Ansatz gewählt, der die Nachteile herkömmlicher Rechenverfahren überwindet. Dazu verwendeten sie die so genannte (diffusive) Quanten-Monte-Carlo-Methode, mit der die chemischen Bindungen in einem realistischen Reaktionskomplex weitgehend näherungsfrei errechnet werden können. Das Verfahren ist den heute gebräuchlichen Dichtefunktional-Methoden an Genauigkeit überlegen. Darüber hinaus ist es auch auf Systeme mit mehr als hundert Atomen anwendbar, die mit genaueren Methoden aus der Quanten-Chemie rechnerisch nicht mehr zu bewältigen wären.

Den Berliner Wissenschaftlern und ihren Kollegen gelang es mit der neuen Methode, die bisher widersprüchlichen theoretischen und experimentellen Befunde zu dieser Reaktion miteinander in Einklang zu bringen. "Wir bestimmen damit die Struktur und Energie der Moleküle - sprich, ihr chemisches Verhalten - allein an Hand der Ordnungszahlen der beteiligten Atome. Die Quanten-Monte-Carlo-Methode stützt sich dabei auf keinerlei empirische Parameter, sie ist, kurz gesagt, eine ab-initio-Methode," erläutert dazu Peter Kratzer, Wissenschaftler am Berliner Fritz-Haber-Institut. Im Grunde möchten die Forscher in einem Molekül die Verteilung der Elektronen bestimmen, die sich nach den Regeln der Quantenmechanik aus der Lösung einer Vielteilchen-Schrödinger-Gleichung ergibt. Die Quantennatur und gegenseitige Abstoßung der Elektronen macht dies jedoch zu einer äußerst komplexen Aufgabe: Beides führt dazu, dass die Bewegungen aller Elektronen nur zusammen, also in Korrelation zueinander, und nicht unabhängig voneinander beschrieben werden können.

Das Quanten-Monte-Carlo Verfahren löst nun die Schrödinger-Gleichung mit einem statistischen Algorithmus. Die hochdimensionale elektronische Vielteilchen-Wellenfunktion wird dabei, ausgehend von einer geeigneten Versuchswellenfunktion, direkt simuliert. Die statistische Genauigkeit lässt sich hierbei - über die Einbeziehung von immer mehr elektronischen Konfigurationen in die Simulation - schrittweise erhöhen. Im Ergebnis können auf diese Weise molekulare Energien sehr genau abgeschätzt werden. Ein weiterer entscheidender Vorzug der Quanten-Monte-Carlo-Verfahren für die tägliche Rechenpraxis ist, dass sie sich vergleichsweise leicht auf Parallelrechnern umsetzen lassen und so die Rechenzeit stark verkürzt werden kann.

Mit ihren Berechnungen konnten die Wissenschaftler nun das "Barrieren-Rätsel" bei dieser Reaktion in seinem Kern zweifelsfrei aufklären. Danach müssen die Wasserstoffmoleküle bei der Adsorption auf einer reinen Siliziumoberfläche tatsächlich eine sehr hohe Energiebarriere überwinden. Umgekehrt verläuft die Desorption von der Oberfläche, die weitgehend mit Wasserstoffatomen bedeckt ist, ganz anders ab: Wenn sich zwei Atome zu einem Wasserstoffmolekül vereinigen, durchlaufen sie einen Reaktionsweg, der ein eher flaches Energieprofil aufweist. Dieses Szenario steht im Einklang mit experimentellen Analysen und bildet die Basis für weiterführende Untersuchungen, die den Einfluss von Oberflächendefekten (wie Stufen und Kanten) auf das Reaktionsgeschehen unter die Lupe nehmen.

Matthias Scheffler, Direktor der Abteilung Theorie am Fritz-Haber-Institut, erklärt dazu: "Das Quanten-Monte-Carlo-Verfahren hat sich als sehr nützlich für unser Verständnis erwiesen, und zwar bei einer Reaktion, bei der traditionelle Ansätze überfordert waren. Ich denke, dieses Verfahren kann unser methodisches Instrumentarium sehr sinnvoll ergänzen." Bei aller Zuversicht, so Scheffler weiter, "muss es als relativ junges Rechenverfahren noch erheblich weiter entwickelt werden, um ein ähnlich vielseitiges Instrument zu werden wie es heute etwa die Dichtefunktional-Verfahren sind, die sich bis in die industrielle Forschung hinein durchgesetzt haben."

Dr. Peter Kratzer
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6
14195 Berlin
Tel.: 030 - 8413 - 4809
Fax: 030 - 8413 - 4701
E-Mail: kratzer@fhi-berlin.mpg.de

Dr. Peter Kratzer | idw
Weitere Informationen:
http://www.mpg.de/pri02/pri02100.htm
http://www.fhi-berlin.mpg.de
http://www.mpg.de/pri02/pri02100.pdf

Weitere Berichte zu: Atom Computersimulation Elektron Molekül Prozess

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Projekt CeGlaFlex: Hauchdünne, bruchsichere und biegsame Keramik und Gläser
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Löschbare Tinte für den 3-D-Druck
24.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie