Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Netzhaut beim Rechnen zusehen

05.08.2002


Abb.: Multiquanten-mikroskopische Aufnahmen von "starburst"-Zellen; a) mit Gewebe,


b) mit einem der verwendeten Lichtreize in einer Fotomontage.

Fotos: Max-Planck-Institut für medizinische Forschung


Forschern der Max-Plank-Gesellschaft und der University of Washington gelingen mit besonderer Mikroskopie-Technologie neue Einblicke, wie unsere Augen bewegte Bilder detektieren


Die Retina (Netzhaut) ist nicht nur ein Detektor, sondern ein hochspezialisierter Prozessor zur Bildverarbeitung in unseren Augen, der abgebildete Szenen analysiert, zeitliche, räumliche und farbliche Informationen extrahiert und diese an die visuellen Zentren im Gehirn weiterleitet. Bisher war nur wenig darüber bekannt, inwieweit eine lokale Signalverarbeitung bereits in den Dendriten der retinalen Neurone stattfindet. Wissenschaftlern vom Max-Planck-Institut für medizinische Forschung sowie von der University of Washington in Seattle/USA ist es nun mit einem neuen bildgebenden Verfahren, der Multiquanten-Mikroskopie, gelungen, die lebende, lichtempfindliche Retina mit hoher Auflösung sichtbar zu machen und ihre Mechanismen der Informationsverarbeitung zu untersuchen. Sie entdeckten hierbei, das Bereiche in ein und derselben Nervenzelle weitgehend unabhängig voneinander auf unterschiedliche Bewegungsrichtungen reagieren können - also mehrere Richtungsdetektoren in sich vereinen (nature, Advanced Online Publication 4.August 2002)


Mit ihrem Experiment sind die Max-Planck-Forscher Thomas Euler und Winfried Denk in Zusammenarbeit mit Peter B. Detwiler von der University of Washington in Seattle/USA der Lösung eines klassischen Problems in der Retinaforschung einen bedeutenden Schritt näher gekommen. Bereits 1964 hatte ein Team von Wissenschaftlern der Cambridge University (England) in der Retina Nervenzellen gefunden, die nur dann antworten, wenn sich ein im Auge abgebildetes Muster in eine bestimmte Richtung bewegt. Damals ahnte wohl niemand, dass es fast 40 Jahre dauern würde, um jene Nervenzellen zu identifizieren, die die dazu notwendigen neuronalen Berechnung anstellen.


Die von den Cambridge-Forschern beschriebenen Zellen gehören zu den Ausgangszellen der Retina (Ganglienzellen) und werden als "richtungsselektive Ganglienzellen" bezeichnet, da sie stark antworten, wenn sich ein Reiz in eine bestimmte Richtung bewegt, aber praktisch keine Reaktion zeigen, wenn sich derselbe Reiz mit der selben Geschwindigkeit in die Gegenrichtung bewegt. Das bedeutet, das Gehirn erhält bereits von dieser Zellpopulation Informationen darüber, wohin sich ein "Objekt" im Sichtfeld bewegt. Die Frage war also: Wie und wo stellt die Retina die dazu notwendigen Berechnungen an? Sind es die Ganglienzellen selbst, die aus richtungsunspezifischen Eingängen ein Richtungssignal errechnen, oder erhalten die Ganglienzellen bereits von anderen Neuronen richtungsspezifische Signale?

In ihrer jetzt in "Nature" veröffentlichten Studie konzentrierten sich die Heidelberger Forscher auf einen bestimmten Typ von Retina-Nervenzellen, die wegen ihrer charakteristischen Gestalt auch "starburst"-Amakrinzellen genannt werden. Diesen Zelltyp, der Signale an die richtungsselektiven Ganglienzellen weiterleitet, hatte man schon länger im Verdacht, die Richtungsberechnungen vorzunehmen. Allerdings zeigen die am Zellkörper elektrisch abgeleitete Antworten keinerlei Richtungsselektivität, d.h. die Zellen sind an sich bzw. als Ganzes nicht richtungsselektiv. Doch viele Amakrinzellen haben keine definierte "Ausgangsleitung", d.h. kein Axon; sie empfangen mit ihren Fortsätzen, den Dendriten, Eingangssignale, verarbeiten diese, und geben das Resultat dieser Berechnung wiederum über dieselben Fortsätze weiter, unter anderem an die richtungsselektiven Ganglienzellen.

Die feinen Dendriten von Nervenzellen sind oft so dünn, dass sie elektrophysiologischen Messungen mit Mikroelektroden nicht ohne weiteres zugänglich sind. Um die durch Kalzium vermittelten biochemischen Signale, die der Kommunikation zwischen Nervenzellen zugrunde liegen, in den Dendriten zu messen, verwendeten die Max-Planck-Forscher daher eine neue optische Methode, die Multiquanten-Mikroskopie, die auf einem gepulsten Infrarot-Laser aufbaut. Dessen Licht ist, obwohl millionenfach intensiver als direkte Sonneneinstrahlung, unsichtbar für unser Auge, weil es nicht von den lichtempfindlichen Sehpigmenten in den Fotorezeptorzellen der Retina absorbiert wird. Das normalerweise zu Anregung der Indikatorfarbstoffe benötigte sichtbare Licht würde die äußerst empfindliche Retina binnen Sekunden erblinden lassen.

Die extrem kurzen, aber sehr intensiven Lichtpulse des Infrarot-Lasers bringen Farbstoffindikator-Moleküle, die zuvor in die zu untersuchenden Zellen injiziert wurden, in einem nicht-linearen Prozess der Multiquanten-Absorption zum Fluoreszieren. Im Gegensatz zur konventionellen Konfokalmikroskopie wird bei der Multiquanten-Mikroskopie jedes Farbstoffindikator-Molekül statt mit einem kurzwelligen, energiereichen Photon mit zwei langwelligen Photonen niedriger Energie angeregt. Mit diesem langwelligen Licht (Infrarot) werden die Photorezeptoren praktisch nicht stimuliert, und die Lichtempfindlichkeit der Retina bleibt erhalten. So ist es erstmals möglich, die Retina mit Lichtmustern zu reizen und gleichzeitig die Antworten ihrer Neurone optisch aufzuzeichnen.

Mit dieser Technik nun konnten die Forscher Änderungen der Ionenkonzentration bei den Ausgangssynapsen der "starburst"-Amakrinzellen mit hoher zeitlicher und räumlicher Auflösung messen. Hierbei fanden die Wissenschaftler heraus, dass verschiedene Bereiche innerhalb ein und derselben "starburst"-Zelle weitgehend unabhängig von einander reagieren können und dabei jeweils unterschiedliche Bewegungsrichtungen bevorzugen. Somit sind also bereits ihre dendritischen Ausgangssignale richtungsselektiv, doch jeder Dendrit reagiert auf eine andere Richtung optimal. Das erklärt auch, warum das elektrische Signal im Zellkörper unspezifisch erscheint - die Signale aus den Dendriten mitteln sich. Mit anderen Worten, jede "starburst"-Zelle vereint eine Anzahl von Richtungsdetektoren in sich.

"Durch die optische Messung von dendritischen Kalziumsignalen", so Dr. Thomas Euler, Gruppenleiter am Max-Planck-Institut für medizinische Forschung und Erstautor der "Nature"-Studie, "haben wir erstmals gezeigt, dass die Information, wohin sich ein Objekt in unserem Sichtfeld bewegt, bereits eine Stufe vor den Ganglienzellen, nämlich in den "starburst"-Zellen errechnet wird."

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Dendrit Ganglienzelle Multiquanten-Mikroskopie Nervenzelle Netzhaut Retina

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops