Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Netzhaut beim Rechnen zusehen

05.08.2002


Abb.: Multiquanten-mikroskopische Aufnahmen von "starburst"-Zellen; a) mit Gewebe,


b) mit einem der verwendeten Lichtreize in einer Fotomontage.

Fotos: Max-Planck-Institut für medizinische Forschung


Forschern der Max-Plank-Gesellschaft und der University of Washington gelingen mit besonderer Mikroskopie-Technologie neue Einblicke, wie unsere Augen bewegte Bilder detektieren


Die Retina (Netzhaut) ist nicht nur ein Detektor, sondern ein hochspezialisierter Prozessor zur Bildverarbeitung in unseren Augen, der abgebildete Szenen analysiert, zeitliche, räumliche und farbliche Informationen extrahiert und diese an die visuellen Zentren im Gehirn weiterleitet. Bisher war nur wenig darüber bekannt, inwieweit eine lokale Signalverarbeitung bereits in den Dendriten der retinalen Neurone stattfindet. Wissenschaftlern vom Max-Planck-Institut für medizinische Forschung sowie von der University of Washington in Seattle/USA ist es nun mit einem neuen bildgebenden Verfahren, der Multiquanten-Mikroskopie, gelungen, die lebende, lichtempfindliche Retina mit hoher Auflösung sichtbar zu machen und ihre Mechanismen der Informationsverarbeitung zu untersuchen. Sie entdeckten hierbei, das Bereiche in ein und derselben Nervenzelle weitgehend unabhängig voneinander auf unterschiedliche Bewegungsrichtungen reagieren können - also mehrere Richtungsdetektoren in sich vereinen (nature, Advanced Online Publication 4.August 2002)


Mit ihrem Experiment sind die Max-Planck-Forscher Thomas Euler und Winfried Denk in Zusammenarbeit mit Peter B. Detwiler von der University of Washington in Seattle/USA der Lösung eines klassischen Problems in der Retinaforschung einen bedeutenden Schritt näher gekommen. Bereits 1964 hatte ein Team von Wissenschaftlern der Cambridge University (England) in der Retina Nervenzellen gefunden, die nur dann antworten, wenn sich ein im Auge abgebildetes Muster in eine bestimmte Richtung bewegt. Damals ahnte wohl niemand, dass es fast 40 Jahre dauern würde, um jene Nervenzellen zu identifizieren, die die dazu notwendigen neuronalen Berechnung anstellen.


Die von den Cambridge-Forschern beschriebenen Zellen gehören zu den Ausgangszellen der Retina (Ganglienzellen) und werden als "richtungsselektive Ganglienzellen" bezeichnet, da sie stark antworten, wenn sich ein Reiz in eine bestimmte Richtung bewegt, aber praktisch keine Reaktion zeigen, wenn sich derselbe Reiz mit der selben Geschwindigkeit in die Gegenrichtung bewegt. Das bedeutet, das Gehirn erhält bereits von dieser Zellpopulation Informationen darüber, wohin sich ein "Objekt" im Sichtfeld bewegt. Die Frage war also: Wie und wo stellt die Retina die dazu notwendigen Berechnungen an? Sind es die Ganglienzellen selbst, die aus richtungsunspezifischen Eingängen ein Richtungssignal errechnen, oder erhalten die Ganglienzellen bereits von anderen Neuronen richtungsspezifische Signale?

In ihrer jetzt in "Nature" veröffentlichten Studie konzentrierten sich die Heidelberger Forscher auf einen bestimmten Typ von Retina-Nervenzellen, die wegen ihrer charakteristischen Gestalt auch "starburst"-Amakrinzellen genannt werden. Diesen Zelltyp, der Signale an die richtungsselektiven Ganglienzellen weiterleitet, hatte man schon länger im Verdacht, die Richtungsberechnungen vorzunehmen. Allerdings zeigen die am Zellkörper elektrisch abgeleitete Antworten keinerlei Richtungsselektivität, d.h. die Zellen sind an sich bzw. als Ganzes nicht richtungsselektiv. Doch viele Amakrinzellen haben keine definierte "Ausgangsleitung", d.h. kein Axon; sie empfangen mit ihren Fortsätzen, den Dendriten, Eingangssignale, verarbeiten diese, und geben das Resultat dieser Berechnung wiederum über dieselben Fortsätze weiter, unter anderem an die richtungsselektiven Ganglienzellen.

Die feinen Dendriten von Nervenzellen sind oft so dünn, dass sie elektrophysiologischen Messungen mit Mikroelektroden nicht ohne weiteres zugänglich sind. Um die durch Kalzium vermittelten biochemischen Signale, die der Kommunikation zwischen Nervenzellen zugrunde liegen, in den Dendriten zu messen, verwendeten die Max-Planck-Forscher daher eine neue optische Methode, die Multiquanten-Mikroskopie, die auf einem gepulsten Infrarot-Laser aufbaut. Dessen Licht ist, obwohl millionenfach intensiver als direkte Sonneneinstrahlung, unsichtbar für unser Auge, weil es nicht von den lichtempfindlichen Sehpigmenten in den Fotorezeptorzellen der Retina absorbiert wird. Das normalerweise zu Anregung der Indikatorfarbstoffe benötigte sichtbare Licht würde die äußerst empfindliche Retina binnen Sekunden erblinden lassen.

Die extrem kurzen, aber sehr intensiven Lichtpulse des Infrarot-Lasers bringen Farbstoffindikator-Moleküle, die zuvor in die zu untersuchenden Zellen injiziert wurden, in einem nicht-linearen Prozess der Multiquanten-Absorption zum Fluoreszieren. Im Gegensatz zur konventionellen Konfokalmikroskopie wird bei der Multiquanten-Mikroskopie jedes Farbstoffindikator-Molekül statt mit einem kurzwelligen, energiereichen Photon mit zwei langwelligen Photonen niedriger Energie angeregt. Mit diesem langwelligen Licht (Infrarot) werden die Photorezeptoren praktisch nicht stimuliert, und die Lichtempfindlichkeit der Retina bleibt erhalten. So ist es erstmals möglich, die Retina mit Lichtmustern zu reizen und gleichzeitig die Antworten ihrer Neurone optisch aufzuzeichnen.

Mit dieser Technik nun konnten die Forscher Änderungen der Ionenkonzentration bei den Ausgangssynapsen der "starburst"-Amakrinzellen mit hoher zeitlicher und räumlicher Auflösung messen. Hierbei fanden die Wissenschaftler heraus, dass verschiedene Bereiche innerhalb ein und derselben "starburst"-Zelle weitgehend unabhängig von einander reagieren können und dabei jeweils unterschiedliche Bewegungsrichtungen bevorzugen. Somit sind also bereits ihre dendritischen Ausgangssignale richtungsselektiv, doch jeder Dendrit reagiert auf eine andere Richtung optimal. Das erklärt auch, warum das elektrische Signal im Zellkörper unspezifisch erscheint - die Signale aus den Dendriten mitteln sich. Mit anderen Worten, jede "starburst"-Zelle vereint eine Anzahl von Richtungsdetektoren in sich.

"Durch die optische Messung von dendritischen Kalziumsignalen", so Dr. Thomas Euler, Gruppenleiter am Max-Planck-Institut für medizinische Forschung und Erstautor der "Nature"-Studie, "haben wir erstmals gezeigt, dass die Information, wohin sich ein Objekt in unserem Sichtfeld bewegt, bereits eine Stufe vor den Ganglienzellen, nämlich in den "starburst"-Zellen errechnet wird."

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Dendrit Ganglienzelle Multiquanten-Mikroskopie Nervenzelle Netzhaut Retina

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Fraunhofer-Forscher entwickeln Messanlage für ZF-Werk in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Startschuss für EU-Projekt: Charakterisierung der Schweißraupe für adaptives Laserauftragschweißen
15.11.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie