Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Netzhaut beim Rechnen zusehen

05.08.2002


Abb.: Multiquanten-mikroskopische Aufnahmen von "starburst"-Zellen; a) mit Gewebe,


b) mit einem der verwendeten Lichtreize in einer Fotomontage.

Fotos: Max-Planck-Institut für medizinische Forschung


Forschern der Max-Plank-Gesellschaft und der University of Washington gelingen mit besonderer Mikroskopie-Technologie neue Einblicke, wie unsere Augen bewegte Bilder detektieren


Die Retina (Netzhaut) ist nicht nur ein Detektor, sondern ein hochspezialisierter Prozessor zur Bildverarbeitung in unseren Augen, der abgebildete Szenen analysiert, zeitliche, räumliche und farbliche Informationen extrahiert und diese an die visuellen Zentren im Gehirn weiterleitet. Bisher war nur wenig darüber bekannt, inwieweit eine lokale Signalverarbeitung bereits in den Dendriten der retinalen Neurone stattfindet. Wissenschaftlern vom Max-Planck-Institut für medizinische Forschung sowie von der University of Washington in Seattle/USA ist es nun mit einem neuen bildgebenden Verfahren, der Multiquanten-Mikroskopie, gelungen, die lebende, lichtempfindliche Retina mit hoher Auflösung sichtbar zu machen und ihre Mechanismen der Informationsverarbeitung zu untersuchen. Sie entdeckten hierbei, das Bereiche in ein und derselben Nervenzelle weitgehend unabhängig voneinander auf unterschiedliche Bewegungsrichtungen reagieren können - also mehrere Richtungsdetektoren in sich vereinen (nature, Advanced Online Publication 4.August 2002)


Mit ihrem Experiment sind die Max-Planck-Forscher Thomas Euler und Winfried Denk in Zusammenarbeit mit Peter B. Detwiler von der University of Washington in Seattle/USA der Lösung eines klassischen Problems in der Retinaforschung einen bedeutenden Schritt näher gekommen. Bereits 1964 hatte ein Team von Wissenschaftlern der Cambridge University (England) in der Retina Nervenzellen gefunden, die nur dann antworten, wenn sich ein im Auge abgebildetes Muster in eine bestimmte Richtung bewegt. Damals ahnte wohl niemand, dass es fast 40 Jahre dauern würde, um jene Nervenzellen zu identifizieren, die die dazu notwendigen neuronalen Berechnung anstellen.


Die von den Cambridge-Forschern beschriebenen Zellen gehören zu den Ausgangszellen der Retina (Ganglienzellen) und werden als "richtungsselektive Ganglienzellen" bezeichnet, da sie stark antworten, wenn sich ein Reiz in eine bestimmte Richtung bewegt, aber praktisch keine Reaktion zeigen, wenn sich derselbe Reiz mit der selben Geschwindigkeit in die Gegenrichtung bewegt. Das bedeutet, das Gehirn erhält bereits von dieser Zellpopulation Informationen darüber, wohin sich ein "Objekt" im Sichtfeld bewegt. Die Frage war also: Wie und wo stellt die Retina die dazu notwendigen Berechnungen an? Sind es die Ganglienzellen selbst, die aus richtungsunspezifischen Eingängen ein Richtungssignal errechnen, oder erhalten die Ganglienzellen bereits von anderen Neuronen richtungsspezifische Signale?

In ihrer jetzt in "Nature" veröffentlichten Studie konzentrierten sich die Heidelberger Forscher auf einen bestimmten Typ von Retina-Nervenzellen, die wegen ihrer charakteristischen Gestalt auch "starburst"-Amakrinzellen genannt werden. Diesen Zelltyp, der Signale an die richtungsselektiven Ganglienzellen weiterleitet, hatte man schon länger im Verdacht, die Richtungsberechnungen vorzunehmen. Allerdings zeigen die am Zellkörper elektrisch abgeleitete Antworten keinerlei Richtungsselektivität, d.h. die Zellen sind an sich bzw. als Ganzes nicht richtungsselektiv. Doch viele Amakrinzellen haben keine definierte "Ausgangsleitung", d.h. kein Axon; sie empfangen mit ihren Fortsätzen, den Dendriten, Eingangssignale, verarbeiten diese, und geben das Resultat dieser Berechnung wiederum über dieselben Fortsätze weiter, unter anderem an die richtungsselektiven Ganglienzellen.

Die feinen Dendriten von Nervenzellen sind oft so dünn, dass sie elektrophysiologischen Messungen mit Mikroelektroden nicht ohne weiteres zugänglich sind. Um die durch Kalzium vermittelten biochemischen Signale, die der Kommunikation zwischen Nervenzellen zugrunde liegen, in den Dendriten zu messen, verwendeten die Max-Planck-Forscher daher eine neue optische Methode, die Multiquanten-Mikroskopie, die auf einem gepulsten Infrarot-Laser aufbaut. Dessen Licht ist, obwohl millionenfach intensiver als direkte Sonneneinstrahlung, unsichtbar für unser Auge, weil es nicht von den lichtempfindlichen Sehpigmenten in den Fotorezeptorzellen der Retina absorbiert wird. Das normalerweise zu Anregung der Indikatorfarbstoffe benötigte sichtbare Licht würde die äußerst empfindliche Retina binnen Sekunden erblinden lassen.

Die extrem kurzen, aber sehr intensiven Lichtpulse des Infrarot-Lasers bringen Farbstoffindikator-Moleküle, die zuvor in die zu untersuchenden Zellen injiziert wurden, in einem nicht-linearen Prozess der Multiquanten-Absorption zum Fluoreszieren. Im Gegensatz zur konventionellen Konfokalmikroskopie wird bei der Multiquanten-Mikroskopie jedes Farbstoffindikator-Molekül statt mit einem kurzwelligen, energiereichen Photon mit zwei langwelligen Photonen niedriger Energie angeregt. Mit diesem langwelligen Licht (Infrarot) werden die Photorezeptoren praktisch nicht stimuliert, und die Lichtempfindlichkeit der Retina bleibt erhalten. So ist es erstmals möglich, die Retina mit Lichtmustern zu reizen und gleichzeitig die Antworten ihrer Neurone optisch aufzuzeichnen.

Mit dieser Technik nun konnten die Forscher Änderungen der Ionenkonzentration bei den Ausgangssynapsen der "starburst"-Amakrinzellen mit hoher zeitlicher und räumlicher Auflösung messen. Hierbei fanden die Wissenschaftler heraus, dass verschiedene Bereiche innerhalb ein und derselben "starburst"-Zelle weitgehend unabhängig von einander reagieren können und dabei jeweils unterschiedliche Bewegungsrichtungen bevorzugen. Somit sind also bereits ihre dendritischen Ausgangssignale richtungsselektiv, doch jeder Dendrit reagiert auf eine andere Richtung optimal. Das erklärt auch, warum das elektrische Signal im Zellkörper unspezifisch erscheint - die Signale aus den Dendriten mitteln sich. Mit anderen Worten, jede "starburst"-Zelle vereint eine Anzahl von Richtungsdetektoren in sich.

"Durch die optische Messung von dendritischen Kalziumsignalen", so Dr. Thomas Euler, Gruppenleiter am Max-Planck-Institut für medizinische Forschung und Erstautor der "Nature"-Studie, "haben wir erstmals gezeigt, dass die Information, wohin sich ein Objekt in unserem Sichtfeld bewegt, bereits eine Stufe vor den Ganglienzellen, nämlich in den "starburst"-Zellen errechnet wird."

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Dendrit Ganglienzelle Multiquanten-Mikroskopie Nervenzelle Netzhaut Retina

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mitarbeiter der Hochschule Ulm entwickeln neue Methode zur Desinfektion von Kontaktlinsen
17.07.2017 | Hochschule Ulm

nachricht Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
07.07.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie