Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Netzhaut beim Rechnen zusehen

05.08.2002


Abb.: Multiquanten-mikroskopische Aufnahmen von "starburst"-Zellen; a) mit Gewebe,


b) mit einem der verwendeten Lichtreize in einer Fotomontage.

Fotos: Max-Planck-Institut für medizinische Forschung


Forschern der Max-Plank-Gesellschaft und der University of Washington gelingen mit besonderer Mikroskopie-Technologie neue Einblicke, wie unsere Augen bewegte Bilder detektieren


Die Retina (Netzhaut) ist nicht nur ein Detektor, sondern ein hochspezialisierter Prozessor zur Bildverarbeitung in unseren Augen, der abgebildete Szenen analysiert, zeitliche, räumliche und farbliche Informationen extrahiert und diese an die visuellen Zentren im Gehirn weiterleitet. Bisher war nur wenig darüber bekannt, inwieweit eine lokale Signalverarbeitung bereits in den Dendriten der retinalen Neurone stattfindet. Wissenschaftlern vom Max-Planck-Institut für medizinische Forschung sowie von der University of Washington in Seattle/USA ist es nun mit einem neuen bildgebenden Verfahren, der Multiquanten-Mikroskopie, gelungen, die lebende, lichtempfindliche Retina mit hoher Auflösung sichtbar zu machen und ihre Mechanismen der Informationsverarbeitung zu untersuchen. Sie entdeckten hierbei, das Bereiche in ein und derselben Nervenzelle weitgehend unabhängig voneinander auf unterschiedliche Bewegungsrichtungen reagieren können - also mehrere Richtungsdetektoren in sich vereinen (nature, Advanced Online Publication 4.August 2002)


Mit ihrem Experiment sind die Max-Planck-Forscher Thomas Euler und Winfried Denk in Zusammenarbeit mit Peter B. Detwiler von der University of Washington in Seattle/USA der Lösung eines klassischen Problems in der Retinaforschung einen bedeutenden Schritt näher gekommen. Bereits 1964 hatte ein Team von Wissenschaftlern der Cambridge University (England) in der Retina Nervenzellen gefunden, die nur dann antworten, wenn sich ein im Auge abgebildetes Muster in eine bestimmte Richtung bewegt. Damals ahnte wohl niemand, dass es fast 40 Jahre dauern würde, um jene Nervenzellen zu identifizieren, die die dazu notwendigen neuronalen Berechnung anstellen.


Die von den Cambridge-Forschern beschriebenen Zellen gehören zu den Ausgangszellen der Retina (Ganglienzellen) und werden als "richtungsselektive Ganglienzellen" bezeichnet, da sie stark antworten, wenn sich ein Reiz in eine bestimmte Richtung bewegt, aber praktisch keine Reaktion zeigen, wenn sich derselbe Reiz mit der selben Geschwindigkeit in die Gegenrichtung bewegt. Das bedeutet, das Gehirn erhält bereits von dieser Zellpopulation Informationen darüber, wohin sich ein "Objekt" im Sichtfeld bewegt. Die Frage war also: Wie und wo stellt die Retina die dazu notwendigen Berechnungen an? Sind es die Ganglienzellen selbst, die aus richtungsunspezifischen Eingängen ein Richtungssignal errechnen, oder erhalten die Ganglienzellen bereits von anderen Neuronen richtungsspezifische Signale?

In ihrer jetzt in "Nature" veröffentlichten Studie konzentrierten sich die Heidelberger Forscher auf einen bestimmten Typ von Retina-Nervenzellen, die wegen ihrer charakteristischen Gestalt auch "starburst"-Amakrinzellen genannt werden. Diesen Zelltyp, der Signale an die richtungsselektiven Ganglienzellen weiterleitet, hatte man schon länger im Verdacht, die Richtungsberechnungen vorzunehmen. Allerdings zeigen die am Zellkörper elektrisch abgeleitete Antworten keinerlei Richtungsselektivität, d.h. die Zellen sind an sich bzw. als Ganzes nicht richtungsselektiv. Doch viele Amakrinzellen haben keine definierte "Ausgangsleitung", d.h. kein Axon; sie empfangen mit ihren Fortsätzen, den Dendriten, Eingangssignale, verarbeiten diese, und geben das Resultat dieser Berechnung wiederum über dieselben Fortsätze weiter, unter anderem an die richtungsselektiven Ganglienzellen.

Die feinen Dendriten von Nervenzellen sind oft so dünn, dass sie elektrophysiologischen Messungen mit Mikroelektroden nicht ohne weiteres zugänglich sind. Um die durch Kalzium vermittelten biochemischen Signale, die der Kommunikation zwischen Nervenzellen zugrunde liegen, in den Dendriten zu messen, verwendeten die Max-Planck-Forscher daher eine neue optische Methode, die Multiquanten-Mikroskopie, die auf einem gepulsten Infrarot-Laser aufbaut. Dessen Licht ist, obwohl millionenfach intensiver als direkte Sonneneinstrahlung, unsichtbar für unser Auge, weil es nicht von den lichtempfindlichen Sehpigmenten in den Fotorezeptorzellen der Retina absorbiert wird. Das normalerweise zu Anregung der Indikatorfarbstoffe benötigte sichtbare Licht würde die äußerst empfindliche Retina binnen Sekunden erblinden lassen.

Die extrem kurzen, aber sehr intensiven Lichtpulse des Infrarot-Lasers bringen Farbstoffindikator-Moleküle, die zuvor in die zu untersuchenden Zellen injiziert wurden, in einem nicht-linearen Prozess der Multiquanten-Absorption zum Fluoreszieren. Im Gegensatz zur konventionellen Konfokalmikroskopie wird bei der Multiquanten-Mikroskopie jedes Farbstoffindikator-Molekül statt mit einem kurzwelligen, energiereichen Photon mit zwei langwelligen Photonen niedriger Energie angeregt. Mit diesem langwelligen Licht (Infrarot) werden die Photorezeptoren praktisch nicht stimuliert, und die Lichtempfindlichkeit der Retina bleibt erhalten. So ist es erstmals möglich, die Retina mit Lichtmustern zu reizen und gleichzeitig die Antworten ihrer Neurone optisch aufzuzeichnen.

Mit dieser Technik nun konnten die Forscher Änderungen der Ionenkonzentration bei den Ausgangssynapsen der "starburst"-Amakrinzellen mit hoher zeitlicher und räumlicher Auflösung messen. Hierbei fanden die Wissenschaftler heraus, dass verschiedene Bereiche innerhalb ein und derselben "starburst"-Zelle weitgehend unabhängig von einander reagieren können und dabei jeweils unterschiedliche Bewegungsrichtungen bevorzugen. Somit sind also bereits ihre dendritischen Ausgangssignale richtungsselektiv, doch jeder Dendrit reagiert auf eine andere Richtung optimal. Das erklärt auch, warum das elektrische Signal im Zellkörper unspezifisch erscheint - die Signale aus den Dendriten mitteln sich. Mit anderen Worten, jede "starburst"-Zelle vereint eine Anzahl von Richtungsdetektoren in sich.

"Durch die optische Messung von dendritischen Kalziumsignalen", so Dr. Thomas Euler, Gruppenleiter am Max-Planck-Institut für medizinische Forschung und Erstautor der "Nature"-Studie, "haben wir erstmals gezeigt, dass die Information, wohin sich ein Objekt in unserem Sichtfeld bewegt, bereits eine Stufe vor den Ganglienzellen, nämlich in den "starburst"-Zellen errechnet wird."

Dr. Bernd Wirsing | Presseinformation

Weitere Berichte zu: Dendrit Ganglienzelle Multiquanten-Mikroskopie Nervenzelle Netzhaut Retina

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics