Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messfühler zum Aufsprühen - Kohlenstoff-Nanoröhren als dehnungsempfindliche Sensoren

27.06.2008
Um die Biegespannung dreidimensionaler Oberflächen, beispielsweise bei Flugzeug-oder Maschinenteilen, zu messen, werden bisher Dehnungsstreifen auf die Oberfläche aufgebracht.

Der Lehrstuhl Mikrosystemtechnik am Institut für Industrielle Fertigung und Fabrikbetrieb (IFF) der Universität Stuttgart entwickelt gemeinsam mit der Fraunhofer Technologie-Entwicklungsgruppe (TEG) Schichten aus Kohlenstoff-Nanoröhren, die als dehnungsempfindliche Sensoren eingesetzt werden können.

Mit dem neuen Verfahren, so die Hoffnung der Wissenschaftler, werden sich Sensoren zur Messung lokaler Dehnungseigenschaften einmal "einfach" auf die Oberfläche aufsprühen lassen. Dies wäre erheblich kostengünstiger und flexibler als bisherige Verfahren.

Die Nanotechnologie birgt ein hohes Innovationspotential und gilt als eine der Schlüsseltechnologien des 21. Jahrhunderts. Kohlenstoff-Nanoröhren (CNT) sind die wichtigsten Vertreter dieser neuen Materialklasse und haben seit ihrer Entdeckung 1991 rasant an Interesse in Forschung und Entwicklung gewonnen. Zurückzuführen ist dies auf die außergewöhnlichen Materialeigenschaften der Nanoröhrchen, die sie für eine Vielzahl von potenziellen Anwendungen, darunter auch als Materialkomponente für Sensoren interessant machen.

Kohlenstoff-Nanoröhren bestehen aus gekrümmten und in sich geschlossenen graphitähnlichen Atomlagen, die typischerweise aus einer sehr großen Anzahl von ringförmig gebundenen Kohlenstoffatomen bestehen und zu einer stabilen schlauchartigen Gesamtstruktur der Moleküle führen. Eine weitere Besonderheit liegt in der molekularen Struktur: Kohlenstoff-Nanoröhren besitzen einen winzigen Durchmesser von nur wenigen Nanometern, sind aber bis zu mehreren Zentimetern lang. Dieses ungewöhnliche Verhältnis führt zu einer großen Oberfläche der CNT-Moleküle bei vergleichsweise geringer Dichte.

All dies hat zur Folge, dass die Röhrchen einerseits eine sehr gute mechanische Zugfestigkeit, andererseits aber auch eine große Elastizität aufweisen.

Die hohe Affinität der Nanoröhren untereinander und auch zu anderen Molekülen führt dazu, dass sie sich leicht zu Bündeln zusammenschließen. Sie können sich jedoch auch zur Anlagerung anderer Stoffe, wie beispielsweise Gase, Dämpfe oder auch biologischen Substanzen wie die Erbsubstanz DNS verwendet werden. Diese Materialeigenschaften machen Kohlenstoff-Nanoröhren für alle sensorischen Anwendungen in der chemischen und biologischen Analytik höchst interessant.

Gegenwärtig werden in Stuttgart material- und anlagentechnische Konzepte entwickelt, die es ermöglichen sollen, dehnungsempfindliche CNT-Schichten kostengünstig und flexibel durch das Aufsprühen von CNT-Dispersionen herzustellen. Als Versuchsstand dient eine Kabine, in der ein Roboter ein Sprühwerkzeug führt.

Ansprechpartner: Dr. Joachim Sägebarth,
Institut für Industrielle Fertigung und Fabrikbetrieb
Tel. 0711/970-1460, e-Mail: jes@iff.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Berichte zu: Kohlenstoff-Nanoröhre Molekül

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Testverfahren für Photovoltaikwafer als DIN SPEC
26.06.2017 | Hochschule für Technik, Wirtschaft und Kultur Leipzig

nachricht Ausweg aus dem Chrom-Verbot
30.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten