Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauteile aus Kupferpulver eröffnen neue Möglichkeiten

16.02.2011
Bisher war es nicht möglich, das Verfahren des selektiven Laserschmelzens (SLM) auch auf Kupferlegierungen anzuwenden.

Nun aber haben Forscher am Fraunhofer-Institut für Lasertechnik ILT das Verfahren so modifiziert, dass sie die technischen Probleme lösen konnten. Die neue Methode bietet große Vorteile, etwa in der Kunststoff-Verarbeitung.


Werkzeugeinsatz mit internen Kühlkanälen gefertigt aus Hovadur(R) K220 mittels SLM.
Fraunhofer-Institut für Lasertechnik ILT, Aachen.

Rapid Manufacturing tritt in der industriellen Fertigungstechnik gerade seinen Siegeszug an. Es handelt sich dabei um Fertigungsverfahren, die digitalisierte Konstruktionsdaten direkt und schnell in Werkstücke umsetzen können.

Im Bereich der Metalle eignet sich insbesondere das selektive Laserschmelzen (Selective Laser Melting, SLM) dazu, kompliziert geformte Bauteile herzustellen, die mit konventioneller Technik nur unter höchstem Aufwand oder gar nicht produzierbar wären. Im Rahmen des Projektes InnoSurface, das vom Bundeswirtschaftsministerium gefördert wird, ist es nun einem Forscherteam am Fraunhofer ILT in Aachen erstmals gelungen, das SML-Verfahren so zu modifizieren, dass es auch für Kupferwerkstoffe geeignet ist. Dies eröffne neue Möglichkeiten beispielsweise für die Herstellung von Werkzeugen für die Kunststoff-Verarbeitung.

Beim SLM wird das Werkstück auf einer Bauplattform schichtweise aus einem pulverförmigen Werkstoff aufgebaut. Das Ganze funktioniert im Grunde wie ein Drucker in drei Dimensionen. Gemäß den computergenerierten Konstruktionsdaten des geplanten Werkstücks wird das Metallpulver schichtweise aufgetragen und anschließend mit einem Laserstrahl an den vorgegebenen Stellen zum Schmelzen gebracht. Es verbindet sich dadurch fest mit dem bereits fertigen Teil des Objekts. Materialprüfungen haben gezeigt, dass derartig erzeugte Komponenten aus Stahl oder Leichtmetall nach einer anschließenden Wärmebehandlung eine ebenso hohe Güte aufweisen wie konventionell hergestellte.

Wegen der hohen Wärmeleitfähigkeit von Kupfer und Kupferlegierungen war es bisher jedoch nicht möglich, SLM auch auf diese Werkstoffe anzuwenden. Zwar hat Kupfer einen niedrigeren Schmelzpunkt als Stahl, aber es absorbiert das Laserlicht nicht so gut, und die Wärmeabfuhr ist größer. Das führt dazu, dass die Schmelzspur abreißt und sich winzige Schmelzkugeln bilden. Diese sind deutlich höher als die Schichtdicke und stören den weiteren Verfahrensablauf. Außerdem erzeugen sie Hohlräume und verringern so die Dichte des späteren Bauteils. »Um die hohe Wärmeabfuhr und den geringen Absorptionsgrad des Kupfers während des Aufschmelzens zu kompensieren, setzen wir anstelle der zur Zeit beim SLM üblichen 200-Watt-Laser einen Laser mit 1000 Watt Leistung ein«, sagt Projektleiter David Becker. Um befriedigende Ergebnisse zu erzielen, wählte er einen Laser, der ein besonders gleichmäßiges Strahlprofil zeigt. Gleichzeitig haben Becker und sein Team die gesamte Anlage so modifiziert, dass der hohe Energieeintrag nicht zu Störungen führt: Sie haben beispielsweise die Schutzgasführung und die Mechanik geändert. »Versuche mit der Kupferlegierung Hovadur K220 zeigen bereits hervorragende Ergebnisse«, so Becker, »die Dichte der Werkstücke beträgt nahezu 100 Prozent.« Das Verfahren ist damit bereit für den industriellen Einsatz.

Gerade die große Wärmeleitfähigkeit prädestiniert Kupfer und seine Legierungen für viele Anwendungen. So sorgen Einsätze aus derartigen Materialien in Stahlwerkzeugen für den Spritzguss zur Herstellung von Kunststoffteilen für eine besonders schnelle Wärmeabfuhr an kritischen Stellen. Mit SLM ist es möglich, diese Kupfereinsätze zusätzlich mit konturnahen Kühlkanälen zu versehen, in denen ein Kühlmittel, beispielsweise Wasser, fließt. Durch die gleichmäßige und schnelle Abkühlung im gesamten Werkzeug werden Taktzeiten und Verzug minimiert.

Demnächst wollen die Aachener Forscher noch einen Schritt weiter gehen und nicht nur Kupferlegierungen, sondern reines Kupfer zu dichten Bauteilen verarbeiten. Dessen Wärmeleitfähigkeit ist noch einmal fast doppelt so hoch wie bei Hovadur K220. Eine neue Herausforderung!

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
David Becker
Rapid Manufacturing
Telefon +49 241 8906-568
david.becker@ilt.fraunhofer.de
Dr. Konrad Wissenbach
Generative Verfahren und funktionale Schichten
Telefon +49 241 8906-147
konrad.wissenbach@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops