Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abbau von Chloramine in öffentlichen Bädern - Wellness für die Nase

03.03.2009
  • Photochemische Reaktion reduziert Chloramine in öffentlichen Bädern für ungetrübten Badespaß
  • Ultraviolettes Licht unterbindet typischen Hallenbadgeruch und Augenreizungen
  • Niederdruck-Amalgam-Lampen verringern Chloreinsatz

Einfach mal entspannen. Den Körper und die Seele im warmen Wasser tragen lassen. Im Whirlpool der Hektik des Tages entfliehen. Freudiges Kinderjuchzen an der Wasserrutsche und die Kleinsten planschen vergnügt im wohlig temperierten Babybecken…


Der Chlorominator nutzt moderne UV-Technik um Chloramine photochemisch abzubauen und das Schwimmbadwasser zu entkeimen (Bild: Grünbeck Wasseraufbereitung GmbH, Höchstädt/Donau)


Amalgam-Niederdruck-Lampen inaktivieren wirkungsvoll Viren, Bakterien und Kleinstlebewesen im Schwimmbadwasser (Bild: Heraeus Noblelight GmbH, Hanau)

Moderne öffentliche Bäder sind heute häufig weit mehr als nur reine Sportstätten, sie sind Orte der Entspannung und des Wohlbefindens für Groß und Klein. Der typische „chlorige“ Hallenbadgeruch, der einem früher schon beim Betreten der Schwimmhalle in die Nase gestochen ist, und rote, gereizte Kinderaugen passen nicht mehr zum Wellness-Gedanken moderner Badelandschaften.

Chloramine als Auslöser
In öffentlichen Bädern wird üblicherweise meist Chlor zur Desinfektion eingesetzt. Das klassische Desinfektionsmittel lässt sich nicht komplett ersetzen, da sonst die benötigte hohe Desinfektionsleistung und notwendige Keimtötungsgeschwindigkeit nicht eingehalten werden kann. Im laufenden Badebetrieb entstehen durch das freie Chlor und die ins Wasser eingetragenen Belastungsstoffe, beispielsweise Hautschuppen, Chloramine wie NH2Cl (Monochloramin) als Nebenprodukte des Desinfektionsprozesses mit Chlor. Diese Chloramine, auch „gebundenes Chlor“ genannt, sind verantwortlich für den typischen Hallenbadgeruch und für Augen- und Schleimhautreizungen bei Wasserkontakt. Die Konzentration der Chloramine ist von mehreren Faktoren abhängig: Wassertemperatur, Beckenvolumen, Anzahl der Badegäste und deren Aktivitätsgrad und das Verfahren zur Wasseraufbereitung. Prinzipiell gilt, je mehr Badegäste, je höher deren Aktivität, je höher die Wassertemperatur und je kleiner das Beckenvolumen desto größer die Menge an entstehenden Chloraminen. Der Grenzwert für gebundenes Chlor beträgt nach der DIN 19643 0,2 mg pro Liter.

Photochemische Reaktion mit UV-Strahlung
Eine gute Möglichkeit, die Konzentration der Desinfektionsnebenprodukte im Wasserkreislauf zu reduzieren ist der sogenannte Chlorominator des Wasseraufbereitungsspezialisten Grünbeck in Höchstädt a. d. Donau.

In der Anlage wird das gebundene Chlor photochemisch abgebaut. Mit Hilfe von hochenergetischen UV-Strahlen werden die Molekularbindungen der Chloramine aufgebrochen, und es entstehen unbedenkliche Stoffe wie Chlorid und Stickstoff. Konstruktiv besteht die Anlage im Wesentlichen aus einem Druckrohr mit zwei sich überlappenden UV-Bestrahlungsbereichen. Im Zuflussbereich finden – je nach Kapazität der Anlage – bis zu sechs 400 Watt UV-Mitteldrucklampen des Speziallichtquellen-Herstellers Heraeus Noblelight Verwendung. Auf Grund des polychromatischen Lampenspektrums im für die Anwendung wirksamen UV-C Spektralbereichs von 200 bis 280 nm und einer spezifischen elektrischen Strahlerleistung von mehr als 45 W/cm können die UV-Lichtquellen die Molekülbindungen der Chloramine aufbrechen und dadurch das gebundene Chlor im Ba-dewasser abbauen. Da dieser Prozess ausschließlich durch den Einsatz von UV-Lichttechnik zustande kommt und keinerlei Zusatzstoffe benötigt, ist der Chloraminabbau sehr umweltfreundlich. Die Abwärme wird nahezu komplett dem Badewasser zugeführt, was den Prozess energieeffizient und damit wirtschaftlich macht. Der hohe Strahlungsfluss der UV-Mitteldruck-Lampen erlaubt kleine Baugrößen und damit kompaktere Wasseraufbereitungs-Anlagen. So messen die 400 Watt UV-Mitteldruck-Lampen in der Länge nur 140 mm bei einem Durchmesser von rund 16 mm.

UV-Technologie reduziert Chloreinsatz
Neben dem Abbau der Chloramine sorgt der Einsatz von UV-Lampen auch für eine Verringerung des notwendigen Chlors. Die Behandlung von Wasser mit UV-Strahlung ist ein sehr wirksamer physikalischer Prozess, um Wasser zu desinfizieren und Schadstoffe abzubauen. Die energiereichen UVC-Strahlen im Bereich von 200 bis 280 nm zerstören sehr wirkungsvoll Bindungen der DNA-Helix. Damit inaktivieren die UV-Strahlen in Sekunden die Zellen der im Wasser befindlichen Krankheitserreger wie Viren, Bakterien und Kleinstlebewesen, die auch keine Resistenzen gegen das UV-Licht entwickeln können. Damit wird die Keimzahl im Schwimmbadwasser zuverlässig reduziert und es kann weniger Chlor verwendet werden.

Um diesen Effekt noch weiter zu verstärken, befinden sich im Chlorominator neben den UV-Mitteldruck-Lampen auch bis zu 12 Heraeus Noblelight Niederdruck-Amalgam-Lampen im Auslass der Bestrahlungskammer. Diese sind mit ihrem quasi monochromatischen Spektrum von 254 nm und einem hohen Wirkungsgrad von ca. 35 % sehr gut für die Desinfektion des Schwimmbadwassers geeignet. Im Vergleich zu herkömmlichen Quecksilber-Niederdruck-Lampen bieten Amalgam-Lampen bei gleicher Geometrie eine deutlich höhere Leistung. Während Quecksilber-Niederdruck-Lampen eine spezifische elektrische Leistung von 0,3 bis 0,5 W/cm Leuchtlänge aufweisen, kommen Amalgam-Lampen auf bis zu 6 W/cm. Grund dafür ist das unterschiedliche Druck-Temperatur-Verhalten. Die Quecksilber-Niederdruck-Lampe erreicht bei rund 40 °C ihren optima-len Quecksilberdampfdruck von 0,8 Pa und damit ihre maximale UVC-Strahlung. Eine höhere oder niedrigere Temperatur durch mehr oder weniger elektrische Eingangsleistung führt zu einer reduzierten UVC-Strahlung. Die Amalgam-Lampe erreicht ihren optimalen Dampfdruck bei ebenfalls 0,8 Pa, allerdings bei einer korrespondierenden Temperatur von 90 – 130 °C (abhängig vom Typ). Das höhere Temperaturniveau ermöglicht eine größere spezifische elektrische Leistung der Amalgam-Lampe und damit eine höhere UVC-Strahlung pro cm Leuchtlänge. Dadurch fällt die Baugröße bei analoger Leistung im Vergleich zur Quecksilber-Lampe deutlich kleiner aus. Anlagenbauer können ihre Geräte kleiner dimensionieren, da sie weniger Lampen und Hüllrohre und damit weniger Platz benötigen. Ein weiteres Einsparpotenzial ergibt sich auch aus der geringeren Zahl von benötigten Vorschaltgeräten.

Aktuelles Praxisbeispiel
Der Chlorominator mit seiner fortschrittlichen UV-Technik kommt bereits in einer Vielzahl von Badestätten zum Einsatz. So wurde vor Kurzem auch der Neubau des Kurmittelhauses Bad Liebenstein (Thüringen) mit zwei Chlorominatoren ausgestattet. Das neue Kurhaus, das im Frühjahr 2009 eröffnet werden soll, verfügt unter anderem über ein Schwimmbad, Erlebnisduschen, eine Saunalandschaft mit Eisbrunnen und Tauchbecken und Entspannungsbäder mit dem Bad Liebensteiner Heilwasser. Das älteste Kur- und Heilbad Thüringens – bereits im Jahre 1601 bescheinigte man dem Wasser der Casimirquelle seine heilende Wirkung – setzt auf moderne Wasseraufbereitung mit UV-Technik. Mitteldruck- und Amalgam-Niederdruck-Lampen reduzieren die auftretenden Chloramine und unterstützen die Wasserentkeimung – so können sich die Badegäste ungetrübt entspannen, sich von Kopf bis Fuß wohlfühlen und sich bereits auf den nächsten Schwimmbadbesuch freuen.

Heraeus Noblelight GmbH mit Sitz in Hanau, mit Tochtergesellschaften in den USA, Großbritannien, Frankreich, China, Australien und Puerto Rico, gehört weltweit zu den Markt- und Technologieführern bei der Herstellung von Speziallichtquellen. Heraeus Noblelight wies 2007 einen Jahresumsatz von 90 Millionen € auf und beschäftigte weltweit 666 Mitarbeiter. Das Unternehmen entwickelt, fertigt und vertreibt Infrarot- und Ultraviolett-Strahler für Anwendungen in industrieller Produktion, Umweltschutz, Medizin und Kosmetik, Forschung und analytischen Messverfahren.

Der Edelmetall- und Technologiekonzern Heraeus mit Sitz in Hanau ist ein weltweit tätiges Familienunternehmen mit über 155jähriger Tradition. Unsere Geschäftsfelder umfassen die Bereiche Edelmetalle, Sensoren, Dental- und Medizinprodukte, Quarzglas und Speziallichtquellen. Mit einem Produktumsatz von 3 Mrd. € und einem Edelmetall-Handelsumsatz von 9 Mrd. € sowie weltweit mehr als 11.000 Mitarbeitern in über 100 Gesellschaften hat Heraeus eine führende Position auf seinen globalen Absatzmärkten.

Für weitere Informationen wenden Sie sich bitte an:

Hersteller:
Heraeus Noblelight GmbH
Heraeusstraße 12-14
D-63450 Hanau
Kontakt: Erik Roth
Tel +49 6181/35-9379, Fax +49 6181/35-16 9926
E-Mail: hng-disinfection@heraeus.com
Redaktion:
Thomas Lödel, Dipl.-Wirtschaftsing. (FH)
Heraeus Noblelight GmbH,
Tel +49 6181/35-80
E-Mail: thomas.loedel@heraeus.com

Thomas Lödel | Heraeus Noblelight GmbH
Weitere Informationen:
http://www.heraeus-noblelight.com

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Ausweg aus dem Chrom-Verbot
30.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften