Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schichtmaterialien: Dünner geht´s nimmer - 2D-Materialien im Fokus einer wissenschaftlichen Tagung

16.08.2016

Die Fachgruppe Festkörperchemie und Materialforschung trifft sich ín diesem Jahr an der Wirkungsstätte ihres Vorstandsmitglieds Professor Dr. Hubert Huppertz, an der Universität Innsbruck. Die Vortragstagung findet vom 19. bis 21. September unter dem Motto „Dick und dünn: facettenreiche Eigenschaften von Schichtmaterialien“ statt. Dabei stehen die Synthese und die Eigenschaften sehr dünner Schichtmaterialien im Fokus. Zu den Höhepunkten der Tagung zählen die Verleihung des H.C. Starck-Promotionspreises und die erstmalige Auszeichnung mit der Rudolf-Hoppe-Vorlesung.

Neben deutschen und österreichischen Vortragenden stellen auch US-amerikanische Wissenschaftler ihre Forschungsarbeiten zu ultradünnen Beschichtungen vor, die man beispielsweise für die immer kleiner werdenden elektronischen oder optoelektronischen Bauteile, für Sensoren oder in der Katalyse benötigt.

In den vergangenen zehn Jahren rückten zweidimensionale (2D-)Materialien in den Mittelpunkt des Forschungsinteresses vieler Festkörperchemiker, das sind Materialien, die quasi nur aus einer einzigen Lage von Atomen bestehen. Diese dünnstmöglichen Schichten weisen ganz andere, häufig ganz neue physikalische Eigenschaften auf als chemisch gleiche, aber mehratomlagige Materialien.

Für Professor Dr. Joshua Goldberger von der Ohio State University in Columbus tut sich hier ein kreatives neues Forschungsgebiet auf; es lassen sich nämlich die Beschichtungen mit 2D-Materialien chemisch funktionalisieren, so dass man zu neuartigen Oberflächeneigenschaften gelangt. Was das beispielsweise für die Zukunft der Elektronik bedeutet, lässt sich zum jetzigen Stand der Grundlagenforschung noch gar nicht absehen.

Das bekannteste 2D-Material ist Graphen, eine Modifikation des Kohlenstoffs. Schichtet man gedanklich mehrerer Graphenschichten übereinander, gelangt man zum Graphit mit ganz anderen physikalischen Eigenschaften. Tatsächlich wurde Graphen zu Beginn mechanisch gewonnen, indem man Schicht für Schicht vom Graphit abblätterte (exfolierte).

Dieses Verfahren wendet Goldberger noch immer an, allerdings bei ganz anderen Materialien, die er so in Germanium- oder Zinn-haltige Graphan-Analoga überführt. Diese 2-D-Schichten ähneln denen des Graphans, das man erhält, wenn man Graphen chemisch mit Wasserstoff umsetzt. Im Gegensatz zu Graphen ist Graphan ein elektrischer Isolator. Man darf gespannt sein, welche Entwicklungen und neuen Anwendungen die große zu erwartende Material-Familie der Graphan-Analoga mit sich bringt.

Der mit der Rudolf-Hoppe-Vorlesung Auszuzeichnende, Professor Dr. Tom Nilges, forscht an der Technischen Universität München ebenfalls über Kandidaten für Dünnschichtanwendungen in der Halbleiterindustrie, für optoelektronische Bauteile und Sensoren. Seine Monoschichten bestehen aus Phosphor, die er aus schwarzem Phosphor, einer Modifikation des roten Phosphors, synthetisiert. Neue Eigenschaften erhalten diese Schichten, wenn der Phosphor partiell durch Arsen ersetzt wird. In seinem jüngsten Forschungsgebiet befasst sich Nilges mit Festkörperionenleitern und Aktivmaterialien für Batterien.

Auch einer der beiden H. C. Starck-Promotionspreisträger, Dr. Martin Oschatz, z.Zt. Postdoc an der Universität Utrecht, versucht, Probleme bei der elektrochemischen Energiespeicherung in Batterien zu lösen, um einen Beitrag für die effizientere Nutzung von alternativen Energiequellen zu leisten. Die von ihm dazu untersuchten Materialien bestehen aus nanoporösem Kohlenstoff, der sich als wichtige Komponente für Elektroden erweisen kann.

Besonders erfolgversprechend sind sogenannte Carbide-Derived-Carbons (CDCs), die es pro Gramm auf eine Oberfläche von annähernd 3.000 Quadratmetern bringen können. Die spezifische Kapazität von Lithium-Schwefel-Batterien konnte deutlich erhöht werden.

Der zweite Empfänger des H.C. Starck-Promotionspreises ist Dr. Martin Heise von der Technischen Universität Dresden, der sich in seiner Dissertation mit der Synthese intermetallischer Verbindungen befasste. Diese Substanzen bestehen aus mindestens zwei metallischen Elementen, die als ungeordnete Legierungen (feste Lösungen) oder als geordnete Phasen vorliegen können. Ihre Kristallstrukturen unterscheiden sich von denen der Elemente, aus denen sie bestehen. Diese Materialien spielen u.a. für Katalysatoren, Wasserstoffspeicher, Permanentmagneten, Thermoelektrika, Supraleiter und Formgedächtnismaterialien eine wichtige Rolle.

Weitere Informationen unter https://www.gdch.de/fmf2016.

Die Gesellschaft Deutscher Chemiker (GDCh) gehört mit über 31.000 Mitgliedern zu den größten chemiewissenschaftlichen Gesellschaften weltweit. Sie hat 28 Fachgruppen und Sektionen, darunter die Fachgruppe Festkörperchemie und Materialforschung mit derzeit 884 Mitgliedern. Die Fachgruppe ist ein kompetentes Forum für Fragestellungen aus den anorganischen Materialwissenschaften in Forschung, Anwendung und Lehre. Die Fachgruppe verleiht den von der Firma H.C. Starck gestifteten Promotionspreis, dotiert mit 5.000 Euro. Für die Rudolf-Hoppe-Vorlesung stiftet die Fachgruppe ein Preisgeld von 1.000 Euro. Rudolf Hoppe war ein namhafter Anorganischer Chemiker, der an der Universität Gießen forschte und lehrte.

Weitere Informationen:

https://www.gdch.de/fmf2016
https://www.gdch.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt
28.07.2017 | Universität Heidelberg

nachricht 10. Uelzener Forum: Demografischer Wandel und Digitalisierung
26.07.2017 | Ostfalia Hochschule für angewandte Wissenschaften

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise