Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue 3-D-Techniken machen das Innerste von Materialien sichtbar

24.10.2011
Mit Röntgengeräten und Tomographen kann man nicht nur Menschen durchleuchten, sondern auch Materialien.

Am Computer werden die Aufnahmen dann zu dreidimensionalen Bildern zusammengesetzt, die dank verbesserter Gerätetechnik und ausgefeilter Rechenverfahren immer brillanter werden. Das Innere von Materialien wird dadurch bis zur atomaren Ebene hin auch räumlich sichtbar.

Dies hilft dabei, Werkstoffe besser zu verstehen und ihre Eigenschaften gezielt zu verändern. Auf einer internationalen Tagung in Saarbrücken diskutieren vom 2. bis 4. November erstmals Materialforscher, Informatiker und Mathematiker gemeinsam, wie man die Strukturen von Materialien mit neuen 3-D-Techniken analysieren kann.

Bisher wissen die Entwickler bei vielen Materialien oft nicht genau, welche Substanz eine gewünschte Eigenschaft ausgelöst hat. Motorblöcke aus Aluminium zum Beispiel sollen Fahrzeuge leichter machen. Aluminium ist jedoch ein sehr weiches Material, das erst durch die Zugabe von Silizium fester wird. Damit das Aluminium eine gleichförmige Struktur erhält, werden aber noch ganz wenige Atome eines weiteren Stoffes benötigt. „Die Zugabe von nur einigen Millionstel Anteilen Strontium verändert das dreidimensionale Siliziumnetzwerk völlig und macht am Ende den Motorblock wesentlich fester. Dies konnten wir nur mit Hilfe einer neuen 3-D-Technik, der Nano-Tomographie, nachweisen", erläutert Frank Mücklich, Professor für Funktionswerkstoffe der Saar-Uni und einer der Organisatoren der Saarbrücker Tagung.

Materialforscher interessieren sich sowohl für die chemische Zusammensetzung eines Werkstoffes als auch für seine innere Struktur, denn beide zusammen bestimmen die Eigenschaften von Werkstoffen. „Mit verschiedenen Methoden können wir heute die oft komplexe Geometrie eines Materials sichtbar machen und diese nicht nur in winzigen Mikro- und Nanodimensionen untersuchen, sondern bis zum einzelnen Atom hin“, erläutert Professor Mücklich. Dabei spielt die räumliche Darstellung eine entscheidende Rolle, denn bisher konnte man viele Materialien nur zweidimensional erfassen, so dass wichtige Informationen fehlten. „Wenn man zum Beispiel im Gusseisen nach unerwünschten Luftbläschen sucht, reicht es nicht, den Werkstoff nur an einigen Stellen scheibchenweise zu durchleuchten. Dann hat man nur Zufallstreffer, aber kein vollständiges Bild der fehlerhaften Stellen“, sagt der Materialforscher.

Die verbesserte 3-D-Gerätetechnik wirft aber neue Fragen auf, die nur von Informatikern und Mathematikern beantwortet werden können. „Bei Röntgenbildern etwa entstehen viele Schatten, die aus den Bildern herausgerechnet werden müssen. Bei komplexen Strukturen ist es außerdem hilfreich, wenn der Computer automatisch wiederkehrende Muster erkennt und einzelne Substanzen schon genau zuordnen kann“, erläutert Philipp Slusallek, Professor für Computergraphik der Saar-Uni. Dabei entstünden jedoch schnell riesige Datenmengen, die nur durch ausgeklügelte Algorithmen, also Rechenverfahren, bewältigt werden können. „Die anschauliche Visualisierung von Materialien wird künftig wesentlich dazu beitragen, dass man neuen Werkstoffen bestimmte Eigenschaften zuweist, sie also zum Beispiel besonders hart, biegsam oder reibungsarm werden“, meint der Saarbrücker Forscher.

An der Saarbrücker Tagung zum Thema „3-D-Mikrostrukturen“ werden über 60 Wissenschaftler vor allem aus Deutschland und Frankreich teilnehmen. Die Vorträge beschäftigen sich beispielsweise mit der Analyse von Tomographie-Aufnahmen in Nanodimensionen, der Vorhersage von Strukturen in Metallschäumen und der Charakterisierung von Bauteilen einer Brennstoffzelle. Die erstmals stattfindende Tagung wird von Frank Mücklich, der auch Direktor des Steinbeis-Forschungszentrums für Werkstofftechnik ist, gemeinsam mit Philipp Slusallek, Informatik-Professor und wissenschaftlicher Direktor am Deutschen Forschungszentrum für Künstliche Intelligenz, sowie der Mathematikerin Katja Schladitz vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik in Kaiserslautern organisiert.

Neues Labor zur Atomsonden-Tomographie

Am Ende der Tagung wird am 4. November um 14 Uhr in der Aula der Universität (A 2.3) das neue Labor zur Atomsonden-Tomographie mit dem weltweit führenden Großgerät zur atomar aufgelösten Material-Tomographie (Cameca Leap, USA) vorgestellt. Das Labor befindet sich am Steinbeis-Forschungszentrum für Werkstofftechnik (Material Engineering Center Saarland, MECS) im Gebäude D 3.3 und wird anschließend besichtigt.

Fragen beantworten:

Prof. Dr. Frank Mücklich
Universität des Saarlandes und Material Engineering Center Saarland (MECS)
Mail: muecke@matsci.uni-sb.de
Tel. 0681/302-70500
Prof. Dr. Philipp Slusallek
Universität des Saarlandes und Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Mail: slusallek@cs.uni-saarland.de
Tel. 0681/302-3830 und 0681/85775-5377
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-ISDN-Codec. Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Weitere Informationen:
http://www.3d-microstructure-meeting.de/
http://www.uni-saarland.de/pressefotos

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Firmen- und Forschungsnetzwerk Munitect tagt am IOW
08.12.2016 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht NRW Nano-Konferenz in Münster
07.12.2016 | Ministerium für Innovation, Wissenschaft und Forschung NRW

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie