Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue 3-D-Techniken machen das Innerste von Materialien sichtbar

24.10.2011
Mit Röntgengeräten und Tomographen kann man nicht nur Menschen durchleuchten, sondern auch Materialien.

Am Computer werden die Aufnahmen dann zu dreidimensionalen Bildern zusammengesetzt, die dank verbesserter Gerätetechnik und ausgefeilter Rechenverfahren immer brillanter werden. Das Innere von Materialien wird dadurch bis zur atomaren Ebene hin auch räumlich sichtbar.

Dies hilft dabei, Werkstoffe besser zu verstehen und ihre Eigenschaften gezielt zu verändern. Auf einer internationalen Tagung in Saarbrücken diskutieren vom 2. bis 4. November erstmals Materialforscher, Informatiker und Mathematiker gemeinsam, wie man die Strukturen von Materialien mit neuen 3-D-Techniken analysieren kann.

Bisher wissen die Entwickler bei vielen Materialien oft nicht genau, welche Substanz eine gewünschte Eigenschaft ausgelöst hat. Motorblöcke aus Aluminium zum Beispiel sollen Fahrzeuge leichter machen. Aluminium ist jedoch ein sehr weiches Material, das erst durch die Zugabe von Silizium fester wird. Damit das Aluminium eine gleichförmige Struktur erhält, werden aber noch ganz wenige Atome eines weiteren Stoffes benötigt. „Die Zugabe von nur einigen Millionstel Anteilen Strontium verändert das dreidimensionale Siliziumnetzwerk völlig und macht am Ende den Motorblock wesentlich fester. Dies konnten wir nur mit Hilfe einer neuen 3-D-Technik, der Nano-Tomographie, nachweisen", erläutert Frank Mücklich, Professor für Funktionswerkstoffe der Saar-Uni und einer der Organisatoren der Saarbrücker Tagung.

Materialforscher interessieren sich sowohl für die chemische Zusammensetzung eines Werkstoffes als auch für seine innere Struktur, denn beide zusammen bestimmen die Eigenschaften von Werkstoffen. „Mit verschiedenen Methoden können wir heute die oft komplexe Geometrie eines Materials sichtbar machen und diese nicht nur in winzigen Mikro- und Nanodimensionen untersuchen, sondern bis zum einzelnen Atom hin“, erläutert Professor Mücklich. Dabei spielt die räumliche Darstellung eine entscheidende Rolle, denn bisher konnte man viele Materialien nur zweidimensional erfassen, so dass wichtige Informationen fehlten. „Wenn man zum Beispiel im Gusseisen nach unerwünschten Luftbläschen sucht, reicht es nicht, den Werkstoff nur an einigen Stellen scheibchenweise zu durchleuchten. Dann hat man nur Zufallstreffer, aber kein vollständiges Bild der fehlerhaften Stellen“, sagt der Materialforscher.

Die verbesserte 3-D-Gerätetechnik wirft aber neue Fragen auf, die nur von Informatikern und Mathematikern beantwortet werden können. „Bei Röntgenbildern etwa entstehen viele Schatten, die aus den Bildern herausgerechnet werden müssen. Bei komplexen Strukturen ist es außerdem hilfreich, wenn der Computer automatisch wiederkehrende Muster erkennt und einzelne Substanzen schon genau zuordnen kann“, erläutert Philipp Slusallek, Professor für Computergraphik der Saar-Uni. Dabei entstünden jedoch schnell riesige Datenmengen, die nur durch ausgeklügelte Algorithmen, also Rechenverfahren, bewältigt werden können. „Die anschauliche Visualisierung von Materialien wird künftig wesentlich dazu beitragen, dass man neuen Werkstoffen bestimmte Eigenschaften zuweist, sie also zum Beispiel besonders hart, biegsam oder reibungsarm werden“, meint der Saarbrücker Forscher.

An der Saarbrücker Tagung zum Thema „3-D-Mikrostrukturen“ werden über 60 Wissenschaftler vor allem aus Deutschland und Frankreich teilnehmen. Die Vorträge beschäftigen sich beispielsweise mit der Analyse von Tomographie-Aufnahmen in Nanodimensionen, der Vorhersage von Strukturen in Metallschäumen und der Charakterisierung von Bauteilen einer Brennstoffzelle. Die erstmals stattfindende Tagung wird von Frank Mücklich, der auch Direktor des Steinbeis-Forschungszentrums für Werkstofftechnik ist, gemeinsam mit Philipp Slusallek, Informatik-Professor und wissenschaftlicher Direktor am Deutschen Forschungszentrum für Künstliche Intelligenz, sowie der Mathematikerin Katja Schladitz vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik in Kaiserslautern organisiert.

Neues Labor zur Atomsonden-Tomographie

Am Ende der Tagung wird am 4. November um 14 Uhr in der Aula der Universität (A 2.3) das neue Labor zur Atomsonden-Tomographie mit dem weltweit führenden Großgerät zur atomar aufgelösten Material-Tomographie (Cameca Leap, USA) vorgestellt. Das Labor befindet sich am Steinbeis-Forschungszentrum für Werkstofftechnik (Material Engineering Center Saarland, MECS) im Gebäude D 3.3 und wird anschließend besichtigt.

Fragen beantworten:

Prof. Dr. Frank Mücklich
Universität des Saarlandes und Material Engineering Center Saarland (MECS)
Mail: muecke@matsci.uni-sb.de
Tel. 0681/302-70500
Prof. Dr. Philipp Slusallek
Universität des Saarlandes und Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Mail: slusallek@cs.uni-saarland.de
Tel. 0681/302-3830 und 0681/85775-5377
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-ISDN-Codec. Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Weitere Informationen:
http://www.3d-microstructure-meeting.de/
http://www.uni-saarland.de/pressefotos

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Wie Menschen wachsen
27.03.2017 | Universität Trier

nachricht Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE